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Abstract

Background: Idiopathic Pulmonary Fibrosis (IPF) is a fatal fibrotic lung disease occurring predominantly in middle-
aged and older adults. The traditional diagnostic classification of IPF is based on clinical, radiological, and
histopathological features. However, the considerable heterogeneity in IPF presentation suggests that differences in
gene expression profiles can help to characterize and distinguish disease severity.

Methods: We used data-driven unsupervised clustering analysis, combined with a knowledge-based approach to

identify and characterize IPF subgroups.

Results: Using transcriptional profiles on lung tissue from 131 patients with IPF/UIP and 12 non-diseased controls,
we identified six subgroups of IPF that generally correlated with the disease severity and lung function decline.
Network-informed clustering identified the most severe subgroup of IPF that was enriched with genes regulating
inflammatory processes, blood pressure and branching morphogenesis of the lung. The differentially expressed
genes in six subgroups of IPF compared to healthy control include transcripts of extracellular matrix, epithelial-
mesenchymal cell cross-talk, calcium ion homeostasis, and oxygen transport. Further, we compiled differentially
expressed gene signatures to identify unique gene clusters that can segregate IPF from normal, and severe from
mild IPF. Additional validations of these signatures were carried out in three independent cohorts of IPF/UIP. Finally,
using knowledge-based approaches, we identified several novel candidate genes which may also serve as potential

biomarkers of IPF.

Conclusions: Discovery of unique and redundant gene signatures for subgroups in IPF can be greatly facilitated
through unsupervised clustering. Findings derived from such gene signatures may provide insights into
pathogenesis of IPF and facilitate the development of clinically useful biomarkers.
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Background

The clinical course of idiopathic pulmonary fibrosis (IPF), a
chronic and fatal fibrotic lung disease, is highly variable.
With a median survival of about 3 years, it ranges from a
slow, steady loss of lung function over 5 or more years to a
rapid progressive state and death within 1-3 years post-
diagnosis. The typically slowly progressive course of IPF
can be punctuated by intermittent episodes of precipitous
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decline in lung function termed acute exacerbation (AEIPF)
[1, 2], which often lead to a new, worsened baseline of re-
spiratory impairment. The mechanisms underlying AEIPF
continue to be poorly understood [1, 3]. Further, the lack of
a robust means of identifying biological heterogeneity, and
selecting patient cohorts at risk for outcomes of interest
continue to limit the scope and design of interventional
clinical studies in IPF [1].

The current approach in IPF diagnosis is limited to
clinical assessment based on imaging and histology
features. Stellar attempts, however, are currently under-
way to develop genomic signatures and blood-specific
or lung-specific biomarkers in the future [4]. Gene
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signatures derived from transcriptomic studies have
been reported to differentiate IPF patients and from
other interstitial lung diseases [5, 6] and from healthy
controls [7, 8]. Comparison of gene signatures of healthy
controls with ungrouped IPF patients revealed extensive
genetic heterogeneity in the disease samples and differen-
tial gene expression profiles in IPF subgroups have been
reported in several studies [1, 9, 10]. This demands devel-
opment of computational approaches to resolve hetero-
geneity and identify IPF-specific transcriptomes that may
help to predict disease progression. We therefore reasoned
that unsupervised machine learning approaches could be
applied prior to differential gene expression analysis to fa-
cilitate recognition of potential IPF subgroups with novel
gene signatures that have predictive or prognostic value.
We postulated that data-driven and knowledge-based
approaches using gene expression profiling of a large set
of IPF/UIP cases would both allow us to identify novel
patient subgroups with shared molecular characteristics
and reveal novel candidate genes. Using transcriptional
profiles on lung tissue from 131 patients with IPF/UIP
and 12 non-diseased controls, we identified six sub-
types of IPF that reflect disease severity. We have further
identified molecular signatures that are capable of differ-
entiating (a) IPF from normal controls and (b) severe
from mild IPF. These signatures were subsequently vali-
dated in three independent cohorts of IPF/UIP. Finally,
using knowledge-based approaches, we identified several
novel candidate genes and potential biomarkers for IPF.

Methods

Cohort selection

We used the microarray data from the IPF cohort in the
Lung Genomics Research Consortium’s (LGRC) website
(http://www.lung-genomics.org; also deposited in data
repository GEO - GSE47460 [11]). Among 582 subjects
in dataset GSE47460, 12 had clinical and pathological
designations as “controls”, and 131 had clinical and
pathological diagnoses of “UIP/IPF”. We selected these
143 subjects for our cluster analysis, differential analysis,
and to train classifiers. Demographic and clinical charac-
teristics of the selected cohort are summarized in
Table 1. There was no statistically significant difference
in age between control and IPF patients, but there were
more males in the IPF group. The predicted forced ex-
piratory volume in one second (FEV1), forced vital cap-
acity (FVC), and diffusing capacity of the lungs for
carbon monoxide (Dico) were significantly lower in
UIP/IPF patients compared to those of the control
group. For evaluating the classifier performance and
assessing the relevance of our identified IPF sub types,
we used three independent IPF cohorts (GSE24206 [8],
GSE10667 [9] and GSE53845 [1]).
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Table 1 Patient demographics and clinical characteristics of the
LGRC IPF cohort

Disease Group UIP/IPF Control p Value

Number 131 12

Age—mean (SD) 62.6 (12.2) 64.1 (8.2) 05631 °
%predicted FEV1 (SD) 71.37 (19.00) 94.33 (9.86) 6.3E-5°

%predicted FVC (SD) 64.78 (17.41) 91.75 (7.44) 43E-7°

%predicted Do (SD) 4933 (18.14) 97.00 (21.30) 1.1E-11 2
Gender—9% male 67.2 25 00375 °

IPF idiopathic pulmonary fibrosis; LGRC Lung Genome Research Consortium;
UIP usual interstitial pneumonia; FVC forced vital capacity; FEV1 forced
expiratory volume in 1 s; DCLO diffusing capacity of the lung for carbon
monoxide; SD standard deviation

°By two-tailed Student’s t-Test

bBy X2 test

Clustering, principle component analysis (PCA), and
differential expression analysis

We used the Scikit-learn [12] package in Python for
clustering analysis and PCA, and the limma [13] package
in R for differential analysis. Data was first preprocessed
by aggregating redundant transcript, log2-tranformed
and median normalized across each gene, resulting an
expression data matrix of 14,110 genes by 143 samples
(or subjects). For PCA, the principal components were
calculated using only expression data containing only
IPF samples, and expression data from control and IPF
patients were projected onto these principal compo-
nents. Then, hierarchical clustering using the Ward link-
age method on Euclidean space was performed on the
transformed matrix. The number of clusters was chosen
as the smallest number that allowed maximal difference
in average FEV1, FVC, and Do values among clusters.
Following clustering, differential analysis was performed
across IPF clusters and control with Benjamini—Hoch-
berg false discovery rate (FDR) correction. Differentially
expressed genes (DEG) were defined as those with FDR-
adjusted p-value <0.05 and absolute log2 fold-change >1
when compared to control.

Validation of IPF gene sets with logistic classifiers

We used the Scikit-learn package in Python to build and
evaluate logistic regression classifiers to evaluate classifi-
cation power of each IPF gene set. The datasets from the
training and validation cohort were median normalized
and scaled to (0, 1) across each gene. In order to assess
classifier accuracy and reduce over-fitting, we included a
2-fold cross-validation step before training the final clas-
sifier using all samples in the training cohort. Then, clas-
sifiers were used to predict IPF status in each validation
cohort. Receiver-Operating-Characteristic (ROC) curve,
overall accuracy, sensitivity and specificity were used to
evaluate classifier performance.
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Functional enrichment analysis and candidate gene
prioritization

We used ToppFun of the ToppGene Suite [14] for func-
tional enrichment analysis and ToppGene for candidate
gene prioritization. For candidate gene prioritization, we
used ‘GO: Biological Process, ‘GO: Cellular Component,
‘Human Phenotype, ‘Mouse Phenotype, ‘Pathway and
‘Disease’ as features to compute the similarity. The sig-
nificance threshold was set as FDR-adjusted p-value
<0.05. We used “known” IPF genes from the Orphanet
[15] and DisGenet [16] databases as training sets to rank
the differentially expressed genes in IPF and identify and
prioritize novel candidate genes for IPF.

Results

Gene expression profiles of UIP/IPF patients are highly
heterogeneous and are not consistent within clinical FVC
or DLCO categories

To examine genes associated with UIP/IPF, we first per-
formed differential gene expression analysis comparing
131 UIP/IPF patients with 12 control subjects and iden-
tified 988 differentially expressed genes. However,
among these genes there were several distinctive gene
expression patterns that defined distinct subsets of IPF
patients (Additional file 1: Fig. Sla). To determine
whether this molecular heterogeneity correlated with
disease severity, we grouped UIP/IPF patients based on
their available clinical FVC and D;co measurements
(FVC = 55% or Dico = 40%: mild-to-moderate IPF;
otherwise: severe IPF) and repeated the differential ana-
lysis comparing each of the phenotype-based UIP/IPF
sub-groups with the control group. This resulted in
1175 and 1167 DEGs in IPF patients grouped by Dico
and FVC measurements, respectively. Surprisingly, we ob-
served that even among UIP/IPF patients within the same
FVC or Do sub group, expression of the genes was still
highly variable (Additional file 1: Fig. S1b and c). This
finding was further corroborated with results from princi-
pal component analysis (PCA) of all patient samples using
3657 (first quartile) most variable genes, wherein FVC or
Dy co subgroups could not be separated from each other
by the first two principal components (Additional file 2:
Fig. S2a and b). The heterogeneity within the gene expres-
sion profile of UIP/IPF patients and their poor concord-
ance with markers of IPF severity motivated us to take an
unbiased approach of clustering the IPF patients based on
their gene expression profile to detect (a) potential IPF
subgroups and (b) identify DEGs that correlate with lung
function.

Clustering analysis identifies UIP/IPF patient subgroups
correlating with IPF-severity

We performed ward clustering followed by PCA on the
gene expression profiles of 131 UIP/IPF patients, and
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identified 6 distinct patient clusters (C1 through C6)
(Additional file 2: Fig. S2c). Subgroups of differential IPF
severity, as reflected by the average of clinical measures
(DLco, FEV1, and FVC), were arranged in descending
order from patient clusters C6 to C1. D¢ values in pa-
tient clusters C5 orCé6 were significantly lower than those
in C1, C2, C3, or C4, and significantly higher in patient
clusters C1 or C2 than those in C3, C4, C5, or C6. On the
other hand, FVC and Do values did not differ signifi-
cantly between C1 and C2, C3 and C4, or between C5 and
C6 (Fig. la—c; Additional file 3: Table S1). These results
suggested that the patient subgroups C1 and C2 had mod-
est changes while C5 and C6 had a significant decline in
lung function compared to control. Whereas patient sub-
groups of C3 and C4 exhibited intermediate changes in
their lung function compared to those with mild (C1 and
C2) and severe (C5 and C6) disease phenotypes based on
lung function tests.

To examine transcriptomic differences between these
patient clusters, we performed differential analysis com-
paring IPF patient clusters with control using the R pack-
age ‘limma’ and identified 2968 DEGs (Additional file 4:
Table S2). Interestingly, these DEGs included nearly all
DEGs identified by earlier grouping methods using (a)
pooled IPF patients; (b) patients grouped based on D;co
measurements; and (c) patients grouped based on FVC
measurements (Additional file 5: Fig. S3) and expression
of these 2968 DEGs within each of the six patient clusters
was more homogenous compared to earlier methods.

Substantial differences in gene expression profiles were
found between patient clusters that had similar disease se-
verity, namely C1 vs. C2, C3 vs. C4 and C5 vs. C6 (Fig.
1d). Three major gene expression modules (Gm) can be
identified from the total 2968 DEGs. Gml was up-
regulated in patient cluster C1, C3, C4, C6 and moderately
in C5, Gm2 was up-regulated in patient cluster C1, C3,
C5 and C6, while Gm3 was down-regulated in patient
cluster C3, C5, C6 and moderately in C1 and C4. To gain
functional insight into these genes, we performed enrich-
ment analysis on them and found Gml was enriched in
processes such as ‘extracellular matrix organization, regu-
lation of cell migration’ and ‘collagen catabolic process,
Gm?2 was enriched in processes such as ‘cilium’ and ‘cilium
assembly’ and Gm3 was enriched in ‘angiogenesis’ and
‘lung alveolar morphology’. Taken together, these results
show that UIP/IPF patient subgroups stratified by disease
severity can be distinguished using gene expression
profiles-based clustering, which in turn reveals the in-
volvement of different molecular pathways in the patho-
genesis and severity of fibrotic lung disease.

Functional characterization of IPF subgroups
The number of DEG found in each of the patients’ clus-
ters ranged from 262 genes (patient cluster C2) to 2117
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Fig. 1 UIP/IPF patient subgroups stratified by disease severity by FEV1

(2nd row), FEV1 (3rd row), FVC (4th row) and smoking status (5th row).

, FVC and DLCO have different gene expression profiles. Patient subgroups
were identified using hierarchical clustering with Euclidean distance metric and Ward's linkage (panels a, b, and c). Average D, o (@), FEV1 (b),
and FVC (c) in six UIP/IPF patient subgroups. Panel d shows heat map representation of 2968 DEG (rows) in 143 control and UIP/IPF patients
(columns). Genes and patients were ordered using hierarchical clustering. Color bar represents patents subgroups (1st row in heat map), D co

performed using Limma. Comparison of lung function measures was carried out using two-tailed Student’s T-test

Angiogenesis
Alveolar morphology

Data are expressed as the mean + SD. Differential expression analysis was

genes (C5). About 34% of the total DEGs were unique to
one patient subgroup while the remaining were found to
be overlapping with the others (Fig. 2a and b). All IPF
subgroups shared a set of 145 DEGs, which were named
the IPF core gene set. Among them, genes involved in
‘proteinaceous extracellular matrix’ and ‘regulation of
epithelial to mesenchymal transition (EMT) were up-
regulated, while hemoglobin genes such as HBAIL
HBA2, HBD, HBGI and HBQI were down-regulated
(Fig. 3). The most severe patient subgroups C5 andCé6
shared DEGs in C1 and C3, which were enriched in pro-
cesses including ‘mitotic nuclear division, cilium assembly,
‘epithelial/endothelial migration’ and ‘tube development’.
Patient clusters C5 andC6 also uniquely expressed 840
DEG, with 448 genes in C5 and 392 genes inC6. Subsets
of C5 unique genes were enriched in pathways such as
‘cilium assembly’ and ‘tube development, which were also
perturbed in less-severe IPF subgroups C1 and C3. This
suggests a potential IPF progression path of C1-2C3->C5
characterized by increasing expression of cilium-
associated genes, and is in consistent with a previous
study that reported a positive correlation of cilium-
associated gene expression and increased IPF severity [10].
TheC6-specific gene set included inflammatory response

genes such as HMOX1, ILIR1, IL20RB, IL36G, SELE, SER-
PINF2, TNFRSF21 and TNFRSF6B, but not genes enriched
in cilium-associated pathways (Fig. 3). This suggests IPF
can alternatively progress via up-regulating inflammation
genes without further up-regulation of cilium-associated
genes, and is consistent with a recent report showing in-
creased inflammation in rapid progressive IPF [17].

Validation of IPF subgroups with independent IPF cohorts
To further validate and assess the relevance of our identi-
fied IPF subgroups, we used three independent IPF co-
horts (GSE24206, GSE10667 and GSE53845). By utilizing
multiple testing datasets, we determined if the gene sets
reveal key differences in gene expression between IPF and
normal, and between severe IPF (explant) and usual IPF
(biopsy).

Out of 145 genes in the core IPF gene set (Additional file 6:
Fig. S4), 133 were found in all three validation cohorts.
We used the LGRC dataset with 12 controls and 131 IPF
patients as the training set, and trained a logistic regres-
sion classifier for classification of IPF patients. Then, IPF
status (normal or IPF) was predicted by using the classifier
on each validation dataset, where the decision threshold
was set to provide at least 90% sensitivity. The ROC curve,
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Fig. 2 Comparison of DEGs of each patient cluster revealed genes commonly dysregulated in IPF and genes associated with severe lung function
decline. DEG were divided into six groups based on the number of patient clusters where a gene was differentially expressed. Panel a shows
schematic representation of 2968 DEG in six IPF patient clusters. DEGs along with their group designation are shown in the same order along the
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Dy co in that cluster. Each colored edge (red: up-regulated; green: down-regulated) from a patient cluster to a gene in the rim indicates differential
expression of that gene in the connected patient cluster. Panel b is a heat map representation of the 2968 DEG. Up- or down- regulated genes in
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sensitivity, specificity, and overall accuracy in each of the
validation datasets are shown in Fig. 4. Specificity, sensi-
tivity and accuracy in all three validation datasets were
>90%. Similarly, we validated the C5 andC6 unique gene
sets (Additional file 7: Fig. S5). The C5 unique gene set
(448 genes) performed poorly in differentiating severe IPF
from usual IPF in all validation datasets (data not shown).
Hence, this gene set was not considered for further ana-
lysis. However, although classifiers built on theC6 unique
gene set failed to distinguish AEIPF from IPF, they could
moderately differentiate IPF explant from IPF biopsy, indi-
cating the unique gene expression profile of patient clus-
terC6 were also present in severe, end-stage IPF. Taken
together, these results demonstrate that the core IPF gene
set is a robust gene signature to separate IPF from control.
The advanced IPF gene set (c6 unique gene set) on the
other hand can differentiate advanced IPE, but not AEIPE,
from stable IPF.

Functional prioritization of novel IPF-associated genes

To identify genes that were most functionally relevant to
biologic processes perturbed in IPF, we employed a sys-
tems biology approach to rank each gene in the core and
advanced gene sets based on their functional similarity to

one of the two training sets comprising genes known or
implicated to be involved in IPF [15, 16] (Additional file 8:
Table S3) and their gene expression fold change in IPF
compared to control. Specifically, functional similarity was
calculated using the ToppGene Suite’s gene prioritization
tool [14]. Genes in the core and advanced IPF gene sets
that were also in the training set (“known” IPF genes) were
removed from ranking. The remaining 133 and 382 genes
from the core and advanced gene sets respectively were
then ranked separately based on either similarity score or
fold change compared with normal. The rankings of each
of the genes were aggregated using the rank product
method [18]. Top 10% ranked genes in the advanced and
core IPF gene set are shown in Table 2. Twenty-two of
these genes had been shown to be differentially expressed
in IPF patients compared with healthy control or involved
in IPF pathogenesis. Enrichment analysis of the novel
candidates showed these genes were involved in pathways
often perturbed in IPF. For example, up-regulated genes
in the advanced set such as SERPINF2, MMPI14, DMPI
and CTSL, were enriched in ‘extracellular matrix
organization’. On the other hand, genes involved in
leukocyte activation such as BLM, RAGI, PRKCZ, LBR
and MMPI14 were only present in the advanced gene set.



Wang et al. BMIC Pulmonary Medicine (2017) 17:133

Page 6 of 10

NG1ion ™MEMIO7 IL36G  TPSTH NLRCS ops3  TXK
STAB1 IL1R1 PTPN:
abnormal COPIHO ogpyy TMEMIT RXZ o - CNRY CAMK2A CISH CXCL11
mucociliary A20RG | SELE| P73 TRHDE
clearance RSS! cepip cepiez T L OSMR  AcEZ HmoXi TNERSFIB  STATS
ADGREZ IFI16 | TNFRSF21 NNI3
MUSSL SPAGHS FAMI61A TMEM231 act] aer] SO%2 BST2  0AS2
SPAG17 WDPCP fibrinogen LBP  TNFRSF68 CORIN MANF
HIPE PR HSPOOAAT  pyadr, NEKI complex ACKRT REEA Cytokine (type |
bR AKT  TEKT2 T e THBS1 inflammatory interferon)  TNFRSF8 o,
5.8 WHRN response signaling HLAE  production
cALca 2bnormal  pNar A FUz  DNAH11 FGL1, SERGING? regulation
respiratory .. CCNO of blood EMP2 sTonz (CTSW
SIXT epithelia 3 DMD  DNAH1 TS MME pressure RAMP2 Fi1
K DBH
SCGBIAT bl ) cLuap1PYNC2LIT  RFX3 WDR34 SORD DLGAPS APLN | HEB TEL ik cAv1 kg
WDR19 DYNCZH1 TTC30A BBSS  MLFS X KLHTS  wapres e hyaluronan  kowés pulmonary s GKNi' UNC13D
IFT74  IFT46 HSPB11 [FT172 CCNB2  epcceL NPR3. biosynthesis interalveolar ®  secretory B
AKAP3 cocaz septum CAv2  vesicle CALCR LGB
BBS12 TTC308 IFT43 ‘RAF3IP1 IGF1 PBK  KiIF11 ACVRL1 KL  NOS2 HYALT
CFAP221 NMET FAM83D Iveol
IFT88 ASPM PTGS2 alveolar ABCA3
SPA17 CDHR1 IFT80 R4S conaz (7] viLi. CYR61 jamollar CEBPA TCFIL2
= DNAHT s Bl KNLT e (8115 PoGFB FoxFi  body LAMPS  Ac§ SFRPS BMPER
ROPN1 pAcRG SPAGE Ciliary transport E"“i"""r' cell membrane il
CFAP#S & L wruccmm CNGAT VCAN. EGFLAM TIMP4 '"“T:'C vjgEation regulation NRiH PGR
CFAPS3 nuclear of cell TCF21
TEKT4 THBS4 LTBP1 2 vasculature p MAPKS
ceocis ] RSPHAA SErgRR |17 EEK LTBPI division dovelopment  EPithelial cell  migration tube 2
5% ] MaK  CEP126 TEKTS FBLN2  MMP7 MMP3  MMP1 migration development DACT2 Fz01
ENKUR () VWAt GATAT
ROPN1L ¢cocisy RSPHY ALS2CR12 C€CDC80 ADAMTS3 SLC1A3 ROBO2 ypny  TNF
TS6A10 bR crsk [FaNz TMEM100 RGCC aNXA3 Kird EFNBZ NorcHs  SEMAGA | pry
SPATAls  ZMYNDIO COL15A1 COCH CAN DAMTSS Y PN ickiEs ESR
DNAAF1 TIC26 CAMP  IL1A ALOX12 CCBE1 VEGFD DAPK2
B88OF1 COL10A1 COLTA1 ympio SFRP1 z
AK8 SPEF2 MuP11 positive  PRKCE COM13 = TEK AGER SEMA3B SEMA3G 0
regulation
EMT o ber lcomal AMoTL1|FLTE WNTTA ] ¥ P
Collagen i EPAST
Heatmap legend SERPINB3 SFRP2 N » =& production BB noopiobin owaen TeE RAGE |NEE
complex transport
Up-regulated EpiAY GREMI  /p1a1 COL3A1COL14AT homeostasis SOSTOCT WATIA RXFP1
PMCH CCL13 $1008 FCRLS
Down-regulated CTHRC1ADAMTS16 CILP COL17A1 HBQ1 AHSP  HBA2
CXCL13 CCL11 JSRP1
Not differentially expressed COME WO qofadhy [ASEN| CD38 CCL19 HTRZA HBD  HBA1  HBG1

Fig. 3 Enriched biological processes in each gene category revealed commonly and high-severity-associated biological pathways perturbed in IPF.
Selected enrichment terms derived from gene lists in DEG groups were shown. Connection from a gene (rectangular node) to a biological process

(purple oval node) indicates involvement of that gene in the connected process. Differential expression status of a gene in each patient subgroup was
shown as a mini heat map (orange: up-regulation; turquoise: down-regulation; gray: not differentially expressed, patient subgroup order: C1, C2, C3, C4,
(5 and C6). Network was made in Cytoscape 3.5, and layout was performed using Allegrolayout v2 Professional with manual curation

Prioritization of putative bronchoalveolar lavage fluid
biomarkers for IPF

Among the genes in the core IPF gene set, 60 of them
encode secreted proteins (based on Uniprot [19] annota-
tion) or were previously found in bronchoalveolar lavage
fluid (BALF). Given these genes’ classification power and
their potential clinical utility, we decided to prioritize
candidate IPF BALF biomarkers among them. We first
ranked these genes based on magnitude of the coeffi-
cients from a logistic regression model. Then, we built a
series of logistic regression models, each trained on up to
50 top ranked genes, to determine the threshold for
marker selection (Additional file 9: Fig. S6). In the end, we
identified 11 putative biomarkers, including HMGCS2,
CHLI1, DAO, CRTACI, EDNI, WNTI10A, HBEGE IL6,
CCK, EPHA3 and SEMAS3E, in the core IPF gene set
(details in Additional file 10: Table S4) which is the smal-
lest biomarker set that allowed >0.8 specificity and 0.9
sensitivity in distinguishing IPF from healthy control. Not-
ably, three core IPF markers, HMGCS2, CHLI and
SEMAS3E, were also differentially expressed compared
with control in BALF of bleomycin-treated mouse and
their direction of dysregulation was consistent with our
study [20].

Discussion
In this study of patients with UIP/IPFE, we stratified sub-
groups based on lung function measures and applied

unsupervised analysis on gene expression data. Genes
enriched in cilium or lung alveolar morphology were
expressed at different levels in two distinct transcrip-
tomic profiles from patient clusters with moderate dis-
ease (cluster average Dico: 40-60%), but not severe
disease (cluster average Dico: <40%). Comparison of
DEG from each patient cluster revealed additional gene
signatures that robustly differentiated IPF from normal
lung, and advanced IPF from usual IPF. Finally, using
knowledge-based approaches, we identified several novel
gene candidates and potential BALF biomarkers for IPF.

The uniqueness of current study is that we used un-
supervised, data-driven approaches to discover potential
subgroups within IPF patient samples prior to extracting
IPF-specific gene signatures, which allowed us to identify
genes commonly involved in IPF or only associated with
advanced IPF. In contrast, gene signatures of previous
studies were all derived from comparing pooled IPF
samples with healthy controls [5-9]. As a result, we
identified additional 1981 DEG along with genes discov-
erable without incorporating clustering steps prior to
differential analysis, and 382 out of 392 advanced IPF
genes were among the additional genes.

Our results indicate that gene expression profiles from
IPF patients are heterogeneous. Grouping patients ac-
cording to lung function measures such as FVC and
Dy co reduced such heterogeneity and allowed discovery
of more DEG. However, different gene expression
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Fig. 4 The core IPF gene set robustly differentiated IPF patients from normal controls in three independent validation cohorts. Logistic regression models
were trained on the core IPF gene sets using the training cohort with 2-fold cross-validation, and tested with each validation cohort. The decision threshold
was set to provide at least 90% sensitivity for IPF discovery. ROC curves were shown in the left column, and classification scatter plots of IPF and control
samples were shown in the right column

Table 2 Top 10% prioritized genes in the core and advanced IPF gene sets

Down-regulated genes

Up-regulated genes

CCLI1, CCL13, CCL19, CDH2, COL17A1,

MAPK3, PRKCZ, RAGI,
SFRPS, TCF7L2

g‘;felg HBAI, HBEGF GREM], ILI3RA2, KRTS, PLA2G2A, RPS4YI,
SCGS, SFRP2, WNTI10A4
Cgﬁvj CF A%EL%P /Ilifv’ ACE?2, AREG, BLM, CTSL, DMBT1, DMPI,
’ ’ FST. GJB6, GNL3, GPC1, HASI, HMOX],
Advanced | DOA2, HLA-DOBI, HLA- |~y yo"r pp 1 11 [MNBL, LOX, MMPI4
IPF Gene set DQB2, HLA-DRB4, ’ ’ ’ ’ ’ )

NPPA, SDS, SELE, SERPINF2, SPINK13,

THBS1, TNFRSF6B

Genes in red font color represent genes that have been reported to be related to IPF (PubMed-based literature mining). Genes in core IPF and advanced IPF
(patient clusterC6) gene sets were prioritized using ToppGene application of the ToppGene Suite and their absolute fold change in IPF compared to controls
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profiles could still be found within the lung function
group defined based on FVC or D;co measurements,
and several genes were expressed at similar levels in dif-
ferent patient groups. Gene expression heterogeneity not
yet explainable by lung function measures suggested ac-
tivation of disease-driving pathways that could po-
tentially be informative in efforts to improve the
therapeutic response and outcome. On the other hand,
genes expressed at comparable levels across patient sub-
groups of different severity suggest potential involve-
ment of these genes and linked biological processes in
distinct stages of IPF. In this study, we validated these
clusters by cross referencing with clinical data to avoid
generating clusters that are less relevant clinically. Clus-
tering patients based on gene expression prior to differ-
ential analysis may also help to circumvent some of the
limitations we encountered.

A recent study reported that cilium-associated genes
were associated with more extensive microscopic honey-
combing in IPF patients, although no difference in lung
function measures were found in patient groups defined
by these genes [10]. Our results are consistent with these
data in that we found that cilium-associated genes are
most highly expressed in patient cluster C5 with more
severe IPF. These genes include MUCS5B and DSP which
were known to be involved in IPF [10, 21], matrix metal-
loproteinases that are implicated in IPF such as MMPI,
MMP3 and MMP7 [22], and collagens involved in ECM
organization. However, cilium-associated genes were also
highly expressed, although to a less extent, in less-severe
patient clusters, C1 and C3. More importantly, patient
cluster C4 with low cilium-associated gene expression
had Dyco values that were comparable to those of C3,
suggesting potential additional driver genes underlying
IPF severity.

Our analyses revealed novel IPF associated genes and
biomarkers. Among the 55 prioritized genes, 22 were
previously shown to be dysregulated in IPF or involved
in IPF pathogenesis. For example, up-regulated expres-
sion of candidate genes including CTHRCI, CTSE,
GREM1I, NELL1 and PLA2G2A in the core set, and
AREG, FST, LOX, THBSI and SELE in the advanced set,
were also found to be increased in IPF animal models or
in human IPF patients [7, 23-27]. On the other hand,
ACE2, SFRP2 and WNTI0A were known to be associ-
ated with fibrosis in IPF animal models and survival in
IPF patients [28—30]. The presence of these genes in the
candidate list supports the validity and robustness of our
prioritization although further studies are needed to val-
idate the remaining novel candidate genes identified. In
addition to novel candidate IPF genes, we also identified
putative BALF biomarkers that can potentially differenti-
ate IPF patients from healthy normal volunteers. The
high consistency of the expression of these biomarker
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genes with their corresponding protein expression in
BALF [20] suggest that classifiers built on them could
achieve comparable predictive power observed in our
study. Thus, our biomarker list may inform future efforts
to identify diagnostic, predictive and prognostic bio-
markers in BALF that could obviate the need for more
invasive diagnostic maneuvers and be used in decision
making for IPF care.

Conclusions

In conclusion, our results show that discovery of robust
gene signatures for IPF diagnosis can be greatly facilitated
through integration of unsupervised and systems biology
approaches. Findings derived from gene signatures may
provide insights into pathogenesis of IPF and facilitate the
development of clinically useful biomarkers.

Additional files

Additional file 1: Figure S1. Gene expression profiles in lung tissues
taken from IPF patients were highly heterogeneous. IPF samples were
pooled (a) or grouped based on FVC (b) or D o (0). Differentially
expressed genes were then extracted from each condition with FDR-
adjusted P-value cut-off at 0.05 and fold-change cut-off at 2. Genes (rows)
and samples (columns) were ordered using hierarchical clustering with
Pearson correlation distance metric and complete linkage. (TIFF 1174 kb)

Additional file 2: Figure S2. Principal Component analysis (PCA) plot
characterized separation of IPF sample by three grouping methods.
Distribution of IPF samples along the first two principal components
derived from top 25% most variant genes are shown, and sample
grouping were based on FVC (a), Dico (b), or Ward clustering(C). Each
point represents an IPF sample. (TIFF 282 kb)

Additional file 3: Table S1. Comparison of FVC, FEV1, D_co and age in
six IPF patient subgroups. (XLSX 11 kb)

Additional file 4: Table S2. List of all DEG compared with health
control. (XLSX 339 kb)

Additional file 5: Figure S3. Unsupervised clustering followed by
differential analysis recovered almost all the DEG identified by other
methods and discovered additional DEG. Comparison of differentially
expressed gene identified based on different IPF patient grouping
methods. Pooled-IPF, IPF patients were not divided into subgroups; FVC
or DLCO grouping, IPF patients were divided into subgroups based on
the FVC or DLCO categories, respectively; Clustering, IPF patients were
divided into subgroups using PCA and Ward clustering. (TIFF 151 kb)

Additional file 6: Figure S4. Heat maps of Core and advanced IPF
gene set. 145 core IPF genes (a) and 392 advanced IPF genes were
ordered using hierarchical clustering with Pearson correlation distance
and complete linkage method. Patients (columns) were ordered in the
same way in each heat map. (TIFF 770 kb)

Additional file 7: Figure S5. The advanced IPF gene set could
differentiate end-stage IPF but not AEIPF from usual IPF. Logistic regression
models were trained on the advanced IPF gene sets using the training
cohort, and tested using each validation cohort. The decision threshold was
set to provide at least 90% sensitivity for IPF discovery. ROC curves were
shown in the left column, and classification scatter plots of IPF and control
samples were shown in the right column. (TIFF 163 kb)

Additional file 8: Table S3. List of genes used as training set for
ToppGene prioritization. (XLSX 20 kb)

Additional file 9: Figure S6. Performance of Logistic Regression
Classifier build on up to 50 top ranked putative BALF biomarkers. Putative
BALF biomarkers were ranked based on the magnitude of their decision

function coefficient derived from a logistic classifier trained using the



dx.doi.org/10.1186/s12890-017-0472-9
dx.doi.org/10.1186/s12890-017-0472-9
dx.doi.org/10.1186/s12890-017-0472-9
dx.doi.org/10.1186/s12890-017-0472-9
dx.doi.org/10.1186/s12890-017-0472-9
dx.doi.org/10.1186/s12890-017-0472-9
dx.doi.org/10.1186/s12890-017-0472-9
dx.doi.org/10.1186/s12890-017-0472-9
dx.doi.org/10.1186/s12890-017-0472-9

Wang et al. BMIC Pulmonary Medicine (2017) 17:133

training cohort. A series of logistic classifiers trained on up to 50 top
ranked genes using the training cohort were tested using each validation
cohort. The decision threshold was set to provide the highest prediction
accuracy. (TIFF 78 kb)

Additional file 10: Table S4. List of potential BALF biomarkers in the
core IPF gene set. (XLSX 12 kb)

Abbreviations

DEG: Differentially expressed gene; Dy co: Diffusing capacity of the lungs for
carbon monoxide; FDR: Benjamini-Hochberg false discovery rate;

FEV1: Forced expiratory volume in the first one second; FVC: Forced vital
capacity; IPF: Idiopathic pulmonary fibrosis; PCA: Principal component
analysis; SD: Standard deviation

Funding
This research was supported in part by the NIH NHLBI's 1R21HL133539 (AJ
and SKM), TROT HL134801 (SKM) and 1R21 HL135368 (AJ).

Availability of data and materials

The microarray data sets analyzed in this study were obtained from the
National Center for Biotechnology Information Gene Expression Omnibus
repository (GSE47460). All other data supporting the findings of this study
are made available as Supplementary Information files. All the data sets and
results generated including the IPF clusters are made available as a Web-
based resource (https://research.cchmc.org/morpheus) using Morpheus soft-
ware (https://software broadinstitute.org/morpheus). Users can also export
gene lists of interest to the ToppGene Suite [14] to perform functional en-
richment analysis.

Authors’ contributions

AJ and YW conceived the project, analyzed data and wrote the manuscript.
JC participated in the data analysis. JY and YW implemented the Web portal.
SKM and FM participated in the discussions. YW and AJ wrote the
manuscript. YW, SKM, FM, and AJ edited the manuscript. All authors read
and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable

Competing interests
The authors declare no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical
Center, Cincinnati, OH, USA. Division of Pulmonary, Critical Care and Sleep
Medicine, University of Cincinnati, Cincinnati, OH, USA. 3Division of
Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center,
Cincinnati, OH, USA. 4Department of Pediatrics, University of Cincinnati
College of Medicine, Cincinnati, OH, USA. “Department of Computer Science,
University of Cincinnati College of Engineering, Cincinnati, OH, USA.

Received: 8 August 2017 Accepted: 1 October 2017
Published online: 20 October 2017

References

1. DePianto DJ, Chandriani S, Abbas AR, Jia G, N'Diaye EN, Caplazi P, Kauder
SE, Biswas S, Karnik SK, Ha C, et al. Heterogeneous gene expression
signatures correspond to distinct lung pathologies and biomarkers of
disease severity in idiopathic pulmonary fibrosis. Thorax. 2015;70:48-56.

2. Ley B, Collard HR. Risk prediction in idiopathic pulmonary fibrosis. Am J
Respir Crit Care Med. 2012;185:6-7.

22.

23.

24,

Page 9 of 10

Betensley A, Sharif R, Karamichos D. A Systematic Review of the Role of
Dysfunctional Wound Healing in the Pathogenesis and Treatment of
Idiopathic Pulmonary Fibrosis. J Clin Med. 2016,6

Martinez FJ, Chisholm A, Collard HR, Flaherty KR, Myers J, Raghu G, Walsh
SL, White ES, Richeldi L. The diagnosis of idiopathic pulmonary fibrosis:
current and future approaches. Lancet Respir Med. 2017;5:61-71.

Selman M, Pardo A, Barrera L, Estrada A, Watson SR, Wilson K, Aziz N,
Kaminski N, Zlotnik A. Gene expression profiles distinguish idiopathic
pulmonary fibrosis from hypersensitivity pneumonitis. Am J Respir Crit Care
Med. 2006;173:188-98.

Kim SY, Diggans J, Pankratz D, Huang J, Pagan M, Sindy N, Tom E, Anderson J,
Choi Y, Lynch DA, et al. Classification of usual interstitial pneumonia in patients
with interstitial lung disease: assessment of a machine learning approach using
high-dimensional transcriptional data. Lancet Respir Med. 2015;3:473-82.
Bauer Y, Tedrow J, de Bernard S, Birker-Robaczewska M, Gibson KF, Guardela
BJ, Hess P, Klenk A, Lindell KO, Poirey S, et al. A novel genomic signature
with translational significance for human idiopathic pulmonary fibrosis. Am
J Respir Cell Mol Biol. 2015;52:217-31.

Meltzer EB, Barry WT, D'Amico TA, Davis RD, Lin SS, Onaitis MW, Morrison
LD, Sporn TA, Steele MP, Noble PW. Bayesian probit regression model for
the diagnosis of pulmonary fibrosis: proof-of-principle. BMC Med Genet.
2011;4:70.

Konishi K, Gibson KF, Lindell KO, Richards TJ, Zhang Y, Dhir R, Bisceglia M,
Gilbert S, Yousem SA, Song JW, et al. Gene expression profiles of acute
exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med.
2009;180:167-75.

Yang IV, Coldren CD, Leach SM, Seibold MA, Murphy E, Lin J, Rosen R,
Neidermyer AJ, McKean DF, Groshong SD, et al. Expression of cilium-
associated genes defines novel molecular subtypes of idiopathic pulmonary
fibrosis. Thorax. 2013;68:1114-21.

Peng X, Moore M, Mathur A, Zhou Y, Sun H, Gan Y, Herazo-Maya JD,
Kaminski N, Hu X, Pan H, et al. Plexin C1 deficiency permits synaptotagmin
7-mediated macrophage migration and enhances mammalian lung fibrosis.
FASEB J. 2016;30:4056~70.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel
M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: Machine Learning
in Python. J Mach Learn Res. 2011;12:2825-30.

Ritchie ME, Phipson B, Wu D, Hu YF, Law CW, Shi W, Smyth GK. limma
powers differential expression analyses for RNA-sequencing and microarray
studies. Nucleic Acids Res. 201543

Chen J, Bardes EE, Aronow BJ, Jegga AG. ToppGene Suite for gene list
enrichment analysis and candidate gene prioritization. Nucleic Acids Res.
2009;37:W305-11.

Ayme S. Orphanet, an information site on rare diseases. Soins. 2003;672:46-7.
Pifiero J, Bravo A, Queralt-Rosinach N, Gutiérrez-Sacristan A, Deu-Pons J,
Centeno E, Garcia-Garcia J, Sanz F, Furlong LI. DisGeNET: a comprehensive
platform integrating information on human disease-associated genes and
variants. Nucleic Acids Res. 2017;45:D833-9.

Balestro E, Calabrese F, Turato G, Lunardi F, Bazzan E, Marulli G, Biondini D,
Rossi E, Sanduzzi A, Rea F, et al. Immune Inflammation and Disease
Progression in Idiopathic Pulmonary Fibrosis. PLoS One. 2016;11:e0154516.
Breitling R, Armengaud P, Amtmann A, Herzyk P. Rank products: a simple,
yet powerful, new method to detect differentially regulated genes in
replicated microarray experiments. FEBS Lett. 2004;573:83-92.

UniProt C. UniProt: a hub for protein information. Nucleic Acids Res. 2015;
43.0204-12.

Schiller HB, Fernandez IE, Burgstaller G, Schaab C, Scheltema RA,
Schwarzmayr T, Strom TM, Eickelberg O, Mann M. Time- and compartment-
resolved proteome profiling of the extracellular niche in lung injury and
repair. Mol Syst Biol. 2015;11:819.

Lowe JA, Jones P, Wilson DM. Network biology as a new approach to drug
discovery. Curr Opin Drug Discov Devel. 2010;13:524-6.

Craig VJ, Zhang L, Hagood JS, Owen CA. Matrix metalloproteinases as
therapeutic targets for idiopathic pulmonary fibrosis. Am J Respir Cell Mol
Biol. 2015;53:585-600.

Wang X, Wei X, Thijssen B, Das J, Lipkin S, Yu H. Three-dimensional
reconstruction of protein networks provides insight into human genetic
disease. Nat Biotechnol. 2011;30:159-66.

Azuma A, Takahashi S, Nose M, Araki K, Araki M, Takahashi T, Hirose M,
Kawashima H, Miyasaka M, Kudoh S. Role of E-selectin in bleomycin
induced lung fibrosis in mice. Thorax. 2000;55:147-52.


dx.doi.org/10.1186/s12890-017-0472-9
https://research.cchmc.org/morpheus
https://software.broadinstitute.org/morpheus

Wang et al. BMIC Pulmonary Medicine (2017) 17:133 Page 10 of 10

25. Mylldriemi M, Tikkanen J, Hulmi JJ, Pasternack A, Sutinen E, Rénty M,
Leppédranta O, Ma H, Ritvos O, Koli K. Upregulation of activin-B and follistatin
in pulmonary fibrosis - a translational study using human biopsies and a
specific inhibitor in mouse fibrosis models. BMC Pulm Med. 2014;14:170.

26.  Shannon CE. A Mathematical Theory of Communication. Bell Syst Tech J.
1948;27:379-423.

27. Krafft E, Lybaert P, Roels E, Laurila HP, Rajamaki MM, Farnir F, Mylldriemi M,
Day MJ, Mc Entee K, Clercx C. Transforming growth factor beta 1 activation,
storage, and signaling pathways in idiopathic pulmonary fibrosis in dogs. J
Vet Intern Med. 2014:28:1666~75.

28. Oda K, Yatera K, lzumi H, Ishimoto H, Yamada S, Nakao H, Hanaka T, Ogoshi
T, Noguchi S, Mukae H. Profibrotic role of WNT10A via TGF-3 signaling in
idiopathic pulmonary fibrosis. Respir Res. 2016;17:39.

29. Wang L, Wang Y, Yang T, Guo Y, Sun T. Angiotensin-Converting Enzyme 2
Attenuates Bleomycin-Induced Lung Fibrosis in Mice. Cell Physiol Biochem.
2015;36:697-711.

30. Patel NM, Kawut SM, Jelic S, Arcasoy SM, Lederer DJ, Borczuk AC. Pulmonary
arteriole gene expression signature in idiopathic pulmonary fibrosis. Eur
Respir J. 2013;41:1324-30.

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at .
www.biomedcentral.com/submit () BiolMed Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Cohort selection
	Clustering, principle component analysis (PCA), and differential expression analysis
	Validation of IPF gene sets with logistic classifiers
	Functional enrichment analysis and candidate gene prioritization

	Results
	Gene expression profiles of UIP/IPF patients are highly heterogeneous and are not consistent within clinical FVC or DLCO categories
	Clustering analysis identifies UIP/IPF patient subgroups correlating with IPF-severity
	Functional characterization of IPF subgroups
	Validation of IPF subgroups with independent IPF cohorts
	Functional prioritization of novel IPF-associated genes
	Prioritization of putative bronchoalveolar lavage fluid biomarkers for IPF

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

