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Abstract 

Background  While several traditional observational studies have suggested associations between gut microbiota 
and asthma, these studies are limited by factors such as participant selection bias, confounders, and reverse causality. 
Therefore, the causal relationship between gut microbiota and asthma remains uncertain.

Methods  We performed two-sample bi-directional Mendelian randomization (MR) analysis to investigate the poten-
tial causal relationships between gut microbiota and asthma as well as its phenotypes. We also conducted MR 
analysis to evaluate the causal effect of gut metabolites on asthma. Genetic variants for gut microbiota were obtained 
from the MiBioGen consortium, GWAS summary statistics for metabolites from the TwinsUK study and KORA study, 
and GWAS summary statistics for asthma from the FinnGen consortium. The causal associations between gut micro-
biota, gut metabolites and asthma were examined using inverse variance weighted, maximum likelihood, MR-Egger, 
weighted median, and weighted model and further validated by MR-Egger intercept test, Cochran’s Q test, and “leave-
one-out” sensitivity analysis.

Results  We identified nine gut microbes whose genetically predicted relative abundance causally impacted asthma 
risk. After FDR correction, significant causal relationships were observed for two of these microbes, namely the class 
Bacilli (OR = 0.84, 95%CI = 0.76–0.94, p = 1.98 × 10−3) and the order Lactobacillales (OR = 0.83, 95%CI = 0.74–0.94, 
p = 1.92 × 10−3). Additionally, in a reverse MR analysis, we observed a causal effect of genetically predicted asthma risk 
on the abundance of nine gut microbes, but these associations were no longer significant after FDR correction. No 
significant causal effect of gut metabolites was found on asthma.

Conclusions  Our study provides insights into the development mechanism of microbiota-mediated asthma, as well 
as into the prevention and treatment of asthma through targeting specific gut microbiota.
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Background
Asthma is a common chronic respiratory disease world-
wide, typically starting in childhood and characterized by 
symptoms such as shortness of breath, chest tightness, 
wheezing, and coughing, which may vary in frequency 
and severity over time [1]. It is estimated that asthma-
related symptoms impact a substantial global population, 
with the most recent Global Burden of Disease Study 
(2019) reporting an asthma prevalence of nearly 262 mil-
lion individuals worldwide [2]. The condition may be 
particularly severe in some children with asthma, espe-
cially in low- and middle-income countries [3]. Clus-
ter analysis has identified distinct asthma phenotypes 
among patients, which are influenced by various factors 
such as age at asthma onset, sex, body mass index (BMI), 
and inflammatory profiles [4]. The etiology of asthma is 
complex and likely involves a variety of genetic, environ-
mental, infectious, and nutritional factors [5]. Some envi-
ronmental factors that may contribute to the onset and 
exacerbation of asthma include allergens, viral infections, 
tobacco smoke exposure, and air pollution [6]. The devel-
opment of asthma may also be related to individual sus-
ceptibility. Despite significant progress in understanding 
and managing asthma, it remains a major public health 
problem with substantial morbidity, mortality, and eco-
nomic burden [7].

The gut microbiota plays a critical role in regulat-
ing human health through various mechanisms such as 
metabolic and immune regulation [8]. Environmental 
factors, including antibiotic use and birth mode, have 
been shown to impact the gut microbiota composition 
and increase the vulnerability to immune-related dis-
ease [9, 10]. Dysbiosis of the gut microbiota, character-
ized by an altered microbial community composition and 
imbalance, has been correlated to various diseases, such 
as obesity, hypertension, diabetes, and cancer [11–13]. 
Recently, several cross-sectional studies have shown the 
association between gut microbiota and asthma. For 
example, Demirci et  al. found that Akkermansia mucin-
iphila and Faecalibacterium prausnitzii were decreased 
in the asthma children group compared to the healthy 
children group [14]. A Danish prospective cohort study 
on asthma indicates that a higher abundance of Veil-
lonella and lower abundance of Roseburia, Alistipes, 
and Flavonifractor at age 1 year were associated with an 
increased risk of developing asthma by age 5 years [15]. 
While these traditional observational studies have sug-
gested associations between gut microbiota and asthma, 
these studies are limited by factors such as participant 
selection bias, confounders, and reverse causality. There-
fore, the causal relationship between gut microbiota and 
asthma remains uncertain. It is imperative to clarify a 
causal relationship to better understand the pathogenesis 

of asthma and guide microbiota-oriented interventions 
in clinical practice.

Mendelian randomization (MR) is a statistical method 
that infers the causal relationship between exposures and 
outcomes by using genetic variations as instrumental 
variables (IVs) [16]. MR integrates summary data from 
genome-wide association studies (GWAS), similar to 
natural randomized controlled trials. As the assignment 
of genotypes from parents to offspring is random, MR 
studies are less prone to confounders and reverse causal-
ity than traditional observational studies [17]. MR has 
emerged as a powerful tool for identifying causal rela-
tionships between risk factors and diseases and is widely 
used in epidemiological research to explore the potential 
causal associations between two traits [18].

Recently, MR analysis has been widely used to iden-
tify the causal associations between gut microbiota and 
the risk of many diseases, such as cardiovascular dis-
eases, autoimmune diseases, and psychiatric disorders 
[19–21]. To our knowledge, no MR study has extensively 
examined the causal association between gut microbiota 
and asthma. Therefore, in this study, we conducted the 
two-sample bi-directional MR analysis to examine the 
potential causal relationships between gut microbiota 
and asthma as well as its phenotypes (i.e., obesity related 
asthma, non-allergic asthma, allergic asthma, and eosin-
ophilic asthma). We also used the MR method to evalu-
ate the causal effect of gut metabolites on asthma and its 
phenotypes.

Methods
Data sources
We obtained summary statistics for gut microbiota 
through the largest genome-wide meta-analysis con-
ducted to date by the MiBioGen consortium [22]. This 
study encompassed an analysis of 16S rRNA gene 
sequencing profiles and genotyping data from 18,340 
individuals across 24 population-based cohorts, with the 
aim of investigating the associations between host genet-
ics and gut microbiome. Pool data for 9 phyla, 16 classes, 
20 orders, 35 families, and 131 genera of gut microbiota 
were obtained [23]. Among the 211 gut microbiota taxa, 
the unknown gut microbiota taxa were excluded, and the 
196 known taxa were eventually analyzed in the MR anal-
ysis [24, 25]. The composition of gut microbiota was char-
acterized by sequencing three variable regions (V1-V2, 
V3-V4, and V4) of the 16S rRNA gene. To elucidate the 
genetic determinants influencing the relative abundance 
of microbial taxa, we performed Spearman’s correlation 
analysis. This method was selected for its non-paramet-
ric nature, which does not assume a normal distribution 
of the data, making it suitable for the skewed distribu-
tions often observed in microbial abundance data. In this 
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analysis, we adjusted for potential confounders includ-
ing age, gender, and technical covariates, such as batch 
effects and sample processing variations. Additionally, we 
accounted for population stratification by adjusting for 
principal genetic components. This adjustment is crucial 
to reduce false positives that may arise due to population 
structure rather than true genetic associations.

We utilized summary statistics obtained from a GWAS 
of blood metabolites in a cohort comprising 7824 indi-
viduals of European ancestry, derived from two dis-
tinct datasets (the British TwinsUK study, n = 6056; the 
German KORA F4 study, n = 1768) [26]. A total of 529 
metabolites were measured in human plasma or serum 
samples, and a subset consisting of 486 metabolites was 
selected for genetic analysis in the GWAS after rigor-
ous quality control procedures. The study has identified 
145 metabolic loci with genome-wide significant asso-
ciations, thus offering novel perspectives on the contri-
bution of genetic variation to blood metabolic diversity. 
In selecting the thirteen microbe-derived metabolites 
for our analysis, including betaine, carnitine, choline, 
indolepropionate, glutamate, kynurenine, phenylalanine, 
serotonin, tryptophan, tyrosine, leucine, isoleucine, and 
valine, we were guided by emerging evidence suggesting 
their potential involvement in asthma pathogenesis. For 
instance, betaine and carnitine have been associated with 
alterations in the gut microbiota composition, which may 
influence asthma development [27, 28]. Similarly, tryp-
tophan and its metabolites play a crucial role in immune 

regulation, which is pivotal in asthma’s etiology [29, 30]. 
The selection of these metabolites was based on their 
known or proposed roles in inflammatory processes, 
immune response modulation, and the gut-lung axis, all 
of which are critical in understanding asthma’s complex 
pathophysiology.

GWAS summary statistics for asthma in this study 
were obtained from the FinnGen consortium [31]. The 
FinnGen project, initiated in 2017, involves a cohort of 
500,000 individuals, with the primary aim of integrating 
genetic data with health-related information to advance 
human well-being through genetic research. This GWAS 
of asthma included 156,078 Finnish participants and con-
sisted of 20,629 cases of (overall) asthma and 135,449 
controls. Four asthma phenotypes, including obesity 
related asthma (n = 4142), non-allergic asthma (n = 3155), 
allergic asthma (n = 4859), and eosinophilic asthma 
(n = 1184) were further analyzed as secondary outcomes 
in our MR analysis. The detail of GWAS summary-level 
data is showed in Additional  file  1: Table  S1. The flow-
chart of this study is showed in Fig. 1.

Instrumental variables selection
To ensure the robustness of data and the reliability of 
conclusions, we performed the following quality control 
steps in the selection of eligible IVs. Firstly, candidate 
IVs were identified by selecting single-nucleotide poly-
morphisms (SNPs) associated with gut bacterial taxa at 
the genome-wide significance level (p < 5 × 10−8). Due to 

Fig. 1  Flowchart of the two-sample bidirectional Mendelian randomization analysis of our study
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the small number of loci identified for gut microbiota, we 
used the locus-wide significance (p < 1.0 × 10−5) thresh-
old to obtain a more comprehensive result [32]. Similarly, 
we extracted SNPs at a threshold of p < 5 × 10−5 as IVs in 
the MR analysis of gut metabolites and asthma. Secondly, 
we ensured the independence of each SNP by setting 
the linkage disequilibrium (LD) threshold for clustering 
to be r2 < 0.001 and the size of the clumping distance to 
10,000 kb, based on the European-based 1000 Genomes 
project reference panel [33]. We also harmonized the gut 
microbiota, metabolites, and asthma data for subsequent 
MR. We excluded SNPs with a minor allele frequency 
(MAF) less than 0.01. If SNPs associated to exposure 
were missing in the outcome GWAS, we selected proxy 
SNPs with an r2 > 0.80. Subsequently, we removed palin-
dromic SNPs (with A/T or G/C alleles) to ensure that the 
allelic effects of SNPs on exposures were consistent with 
the allelic effects of SNPs on outcomes. Lastly, the Phe-
noScanner database (http://​www.​pheno​scann​er.​medsc​hl.​
cam.​ac.​uk/) was used to explore whether the identified 
SNPs were associated with the possible confounders for 
asthma [34].

Statistical analysis
We conducted MR analyses to estimate the causal 
effect of the gut microbiota and gut metabolites on 
asthma and its phenotypes, using the Inverse-variance 
weighted (IVW) method as our main analysis approach 
[35]. When bacterial genera containing only one IV, 
we utilized the Wald ratio method. We also applied the 
maximum likelihood [36], MR-Egger regression [37], 
weighted median method [38], and weighted mode to 
further validate the robustness of MR analysis results 
when bacterial genera containing multiple IVs. If the 
IVW method yielded a significant result (p < 0.05), it was 
considered a positive result even if the other methods 
did not show significance, as long as the beta values of 
the other methods were in the same direction. To con-
sider multiple-testing, we employed a modified version of 
the Benjamini and Hochberg false discovery rate (FDR) 
procedure, tailored to our data’s hierarchical and inter-
dependent nature [39]. The FDR-corrected significance 
threshold at each taxonomic level was set as 0.05 divided 
by the effective number of independent tests at each 
taxonomic level: phylum p  = 0.05/9 = 5.56 × 10−3, class 
p = 0.05/16 = 3.13 × 10−3, order p = 0.05/20 = 2.50 × 10−3, 
family p  = 0.05/35 = 1.43 × 10−3, and genus 
p = 0.05/131 = 3.82 × 10−4. To identify potentially causal 
associations, we employed a significance threshold of 
p < 0.05, while also considering suggestive associations 
with FDR-corrected p-values greater than 0.05. We 
only included MR results with consistent effect esti-
mates across all methods in further pleiotropy and 

heterogeneity testing. We used the MR-Egger regression 
and Mendelian Randomization Pleiotropy RESidual Sum 
and Outlier (MR-PRESSO) to identify the potential hori-
zontal pleiotropy [37]. If the intercept of the MR-Egger 
had no statistical significance (p  > 0.05), there was no 
evidence of the presence of horizontal pleiotropy. We 
performed the Cochrane’s Q statistic in the IVW test 
and MR- Egger regression to examine potential hetero-
geneity among the selected IVs [40]. If heterogeneity was 
the presence (p < 0.05), the random-effects IVW model 
was applied again to obtain a more unbiased and robust 
estimate. Additionally, we employed the leave-one-out 
sensitivity analysis to test the potential impact of indi-
vidual SNPs on the observed causal effect. Furthermore, 
we evaluated the strength of the IVs selected in our study 
by calculating F statistic, which allows us to determine 
the extent to which weak instrument bias may affect 
our estimates of the causal associations [41]. The equa-
tion of the F statistic is F= R

2

1−R2 ×
n−k−1

k
 , where R2 rep-

resents the proportion of variance explained by SNPs, n 
is the sample size, and k is the number of included IVs 
[42]. R2 was estimated by MAF and β value, using the for-
mula: R2 = 2 × MAF × (1 − MAF) × β2. An F-statistic less 
than 10 indicates the presence of weak instrumental bias. 
Finally, we conducted a reverse MR analysis to explore 
whether asthma has any causal effect on gut microbiota 
or gut metabolites. The procedure was consistent with 
the above protocol for the two-sample MR. All statisti-
cal analyses were implemented using R software (version 
4.1.2) with the R package TwosampleMR (version 0.5.6) 
and MR-PRESSO (version 1.0).

Results
Selection of instrumental variables
After clumping, we selected 128 IVs associated with 9 
bacterial taxa for asthma, 130 IVs associated with 12 
bacterial taxa for obesity related asthma, 66 IVs associ-
ated with 6 bacterial taxa for non-allergic asthma, 55 IVs 
associated with 4 bacterial taxa for allergic asthma and 
59 IVs associated with 5 bacterial taxa for eosinophilic 
asthma. The F statistics of IVs were all larger than 10, 
indicating no weak instrumental variables bias. Details 
about the selected instrumental variables are shown in 
Additional file 2.

Causal effects of gut microbiota on asthma
As shown in Table  1, the results of IVW analyses indi-
cated that the genetically predicted relative abundance 
of genus Lachnospiraceae_UCG001, genus Butyrici-
monas, and genus Oxalobacter were causally associated 
with a higher risk of asthma, while class Actinobacte-
ria, class Bacilli, family Pasteurellaceae, genus Rumino-
coccus2, order Lactobacillales, order NB1n, and order 

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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Pasteurellales were associated with a lower risk of 
asthma. Except for the causal association between genus 
Butyricimonas and asthma, all other nine causal associa-
tions are validated by all five MR analyses, which pro-
duced consistent direction of effect estimates (Additional 
file 1: Table S2). Figure 2 showed scatter plots across vari-
ous tests. After FDR correction, the IVW estimate of class 
Bacilli (OR = 0.84, 95%CI = 0.76–0.94, p  = 1.98 × 10−3) 
and order Lactobacillales (OR = 0.83, 95%CI = 0.74–0.94, 
p  = 1.92 × 10−3) remained significantly associated with 
asthma.

We further examined the causal associations between 
gut microbiota and four phenotypes of asthma by the 
same process. MR analyses identified a total of 27 causal 
associations, including 12 gut microbiota taxa with obe-
sity related asthma, 6 gut microbiota taxa with non-aller-
gic asthma, 4 bacterial taxa with allergic asthma, and 5 
bacterial taxa with eosinophilic asthma (Additional file 1: 
Table S3). After FDR correction, only the IVW estimate 
of class Deltaproteobacteria (OR = 0.48, 95%CI = 0.31–
0.73, p = 5.40 × 10−4) showed a protective effect against 
eosinophilic asthma, while other causal associations were 
no longer significant.

Causal effects of asthma on gut microbiota
The Reverse MR analysis showed nine causal associa-
tions between the risk of asthma on gut microbiota. As 
shown in Table 2, the results of IVW analyses indicated 
that the genetically predicted risk of asthma was nega-
tively correlated with the relative abundance of family 
Family_XIII, genus Anaerostipes, genus Eubacterium_
xylanophilum_group, genus Family_XIII_UCG001, 
genus Lachnospiraceae_NK4A136_group, genus Mar-
vinbryantia, and genus Ruminococcus_torques_group, 
while it was positively correlated with the relative 

abundance of genus Anaerofilum, genus Intestinimonas, 
genus Lachnospiraceae_UCG004, and genus Lachno-
spira. Except for the genus Eubacterium_xylanophi-
lum_group and genus Intestinimonas, all other nine 
causal associations were validated by all five MR anal-
yses (Additional file  1: Table  S4). Scatter plots across 
various tests are displayed in Additional file  1: Figure 
S1. However, these associations were no longer signifi-
cant after FDR correction.

Causal associations between four phenotypes of 
asthma and gut microbiota were also analyzed by the 
same process. A total of 18 causal associations were 
identified, including obesity related asthma with 3 gut 
microbiota taxa, non-allergic asthma with 6 gut micro-
biota taxa, allergic asthma with 2 bacterial taxa, and 
eosinophilic asthma with 7 bacterial taxa (Additional 
file  1: Table  S5). However, these associations were no 
longer significant after FDR correction.

Bi‑directional MR analysis of gut metabolites and asthma
Similar to the MR analysis of gut microbiota and asthma, 
five MR methods were used to estimate the potential 
causal relationship between gut metabolites and asthma. 
There was no significant causality between gut metabo-
lites and the risk of asthma or its phenotypes (all p > 0.05) 
(Additional file 3: Table S6). For reverse MR analysis, we 
found that only the genetically predicted risk of eosino-
philic asthma had a causal association with lower levels 
of indolepropionate (p = 3.81× 10−2), and sensitivity anal-
ysis results supported the robustness of the MR analysis, 
as shown in Table 3 and Fig. 2. The MR results of asthma 
and its four phenotypes did not show causal associations 
with other gut metabolites (all p > 0.05) (Additional file 3: 
Table S7).

Table 1  Causal associations between gut microbiota and asthma by using the IVW method

IVW inverse-variance weighted: SNP single nucleotide polymorphism: Nsnp number of SNPs: SE standard error: OR odds ratio: CI confidence interval. P-values have 
undergone FDR correction, with the significance threshold at each taxonomic level calculated as 0.05 divided by the effective number of independent tests (phylum 
p = 0.05/9, class p = 0.05/16, order p = 0.05/20, family p = 0.05/35, and genus p = 0.05/131). P-values highlighted in bold denote significant associations, whereas non-
bolded values indicate suggestive associations

Exposure Outcome Nsnp Beta SE OR 95%CI P

Class Actinobacteria Asthma 15 −0.14 0.05 0.87 0.78–0.96 6.06 × 10−3

Class Bacilli Asthma 18 −0.17 0.05 0.84 0.76–0.94 1.98 × 10−3

Family Pasteurellaceae Asthma 14 −0.10 0.04 0.91 0.84–0.98 1.30 × 10−2

genus Butyricimonas Asthma 13 0.14 0.06 1.16 1.03–1.29 1.26 × 10−2

Genus Lachnospiraceae_UCG001 Asthma 13 0.11 0.05 1.12 1.00–1.24 4.63 × 10−2

Genus Oxalobacter Asthma 11 0.08 0.03 1.09 1.02–1.16 1.51 × 10−2

Genus Ruminococcus Asthma 15 −0.11 0.05 0.90 0.81–0.99 3.02 × 10−2

Order Lactobacillales Asthma 15 −0.18 0.06 0.83 0.74–0.94 1.92 × 10−3

Order NB1n Asthma 13 0.07 0.03 1.08 1.01–1.15 3.51 × 10−2

Order Pasteurellales Asthma 14 −0.10 0.04 0.91 0.84–0.98 1.30 × 10−2
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Sensitivity analysis
The MR results underwent pleiotropy and heterogene-
ity test to further validate the causal associations (Addi-
tional file 1: Table S8 and S9). The MR Egger intercept 
and MR-PRESSO analysis did not reveal any clear evi-
dence of pleiotropy (all p  > 0.05), and no evidence of 
heterogeneity was identified according to the Cochran’s 
Q statistics test (all p  > 0.05). Additionally, the leave-
one-out analysis indicated that no single SNP drives the 
identified causal associations (Additional file  1: Figure 
S2 and S3).

Discussion
In the present study, we conducted MR analyses to exam-
ine the causal associations between gut microbiota, 
metabolites and asthma. Our analysis utilized summary 
data from the MiBioGen consortium’s largest GWAS 
meta-analysis of gut microbiota and the FinnGen con-
sortium’s asthma summary data. Our results provide 
evidence for the causal effects of specific microbiota on 
asthma and its phenotypes, as well as for reverse causal-
ity. Additionally, the risk of eosinophilic asthma was also 
potentially associated with the lower indolepropionate. 

Fig. 2  Scatter plots for the causal association between gut microbiota and asthma
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To our knowledge, this study represents the first com-
prehensive MR analysis to explore the potential role of 
gut microbiota and metabolites in the development of 
asthma at the gene prediction level, which may contrib-
ute to strengthening the theoretical basis for the “gut-
lung” axis.

Several studies have reported a potential link between 
asthma and dysbiosis or altered microbiota in the gut 
[43–46]. The differences in microbial diversity and com-
position between healthy individuals and asthma patients 
indicate a potential involvement of gut microbiota in the 
development of asthma [47, 48]. However, there is no 
clear causal relationship between gut microbiota dysbio-
sis and asthma risk. The use of glucocorticoids in asthma 
patients may cause alterations in the gut microbiome, 
and differences in gender ratios and ethnicities between 
studies may affect the composition of the gut microbi-
ome [49–51]. Furthermore, while studies have found that 
asthma patients tend to have a phenotype of gut micro-
biome dysbiosis [52], the results regarding changes in 
specific strains have been inconsistent, making it difficult 
to infer a causal link between gut microbiota and asthma 
risk.

In our study, we aimed to identify specific gut micro-
biota that are causally associated with asthma and its 
phenotypes. We identified 47 potential candidates, of 
which three showed a significant causal relationship 
with asthma. Our study found that the class Bacilli and 
order Lactobacillales were associated with a lower risk of 
asthma. This finding aligns with existing research, such 
as the study by Spacova et  al., which demonstrated the 
beneficial effects of Lactobacillus rhamnosus, a member 
of Lactobacillales, in preventing airway function dete-
rioration in a murine asthma model [53]. Our results 

contribute to the growing body of evidence on the role of 
specific microbiota, including Lactobacillales, in asthma 
pathogenesis.

Our study revealed that the relative abundance of 
genus Lachnospiraceae_UCG001 was suggestive caus-
ally associated with a higher risk of asthma, while the 
genetically predicted risk of asthma was positively cor-
related with the relative abundance of genus Lachno-
spiraceae_UCG004. These findings are consistent with 
a previous study that has shown increased levels of 
Lachnospiraceae in allergic subjects [54]. However, the 
direction of associations between Lachnospiraceae and 
asthma has not been consistent. We also observed a neg-
ative correlation between the genetically predicted risk of 
asthma and the relative abundance of the genus Lachno-
spiraceae_NK4A136_group. Similarly, Lachnospiraceae 
has been found to be associated with a decreased risk of 
eczema and inhalant allergic sensitization [55]. A recent 
study has also manifested that decreased levels of Lach-
nospiraceae in infancy are associated with allergic disease 
[56]. Our study suggests that inconsistencies in previous 
clinical studies may be due to insufficient classification of 
the genera level of gut microbiota. Notably, members of 
the Lachnospiraceae family have been found to encode B 
cell “superantigens” that stimulate potent IgA responses 
resulting in bacterial IgA coating [57]. As major pro-
ducers of short-chain fatty acids, Lachnospiraceae are 
involved in regulatory T cell development in the gut, 
and gut regulatory T cells [58], perhaps through IL-10 
expression, may be protective against the development 
of asthma. The Lachnospiraceae family includes three 
main genera: Ruminococcus, Lachnospira, and Anaerofi-
lum. Arrieta et al. conducted a study on the gut microbi-
ome of infants at risk for asthma in the Canadian Healthy 

Table 2  Causal associations between asthma and gut microbiota by using the IVW method

IVW inverse-variance weighted, SNP single nucleotide polymorphism, Nsnp number of SNPs, SE standard error, OR odds ratio, CI confidence interval. P-values have 
undergone FDR correction, with the significance threshold at each taxonomic level calculated as 0.05 divided by the effective number of independent tests (phylum 
p = 0.05/9, class p = 0.05/16, order p = 0.05/20, family p = 0.05/35, and genus p = 0.05/131). P-values highlighted in bold denote significant associations, whereas non-
bolded values indicate suggestive associations

Exposure Outcome Nsnp Beta SE OR 95%CI P

Asthma Family Family_XIII 61 −0.05 0.02 0.95 0.91–0.99 2.60 × 10−2

Asthma Genus Anaerofilum 59 0.10 0.04 1.10 1.02–1.19 1.56 × 10−2

Asthma Genus Anaerostipes 61 −0.05 0.02 0.95 0.91–1.00 3.33 × 10−2

Asthma genus Eubacterium_xylanophilum_group 60 −0.07 0.03 0.93 0.88–0.99 1.32 × 10−2

Asthma Genus Family_XIII_UCG001 60 −0.07 0.03 0.93 0.89–0.98 5.54 × 10−3

Asthma genus Intestinimonas 60 0.05 0.03 1.05 1.00–1.11 4.74 × 10−2

Asthma Genus Lachnospiraceae_NK4A136_Group 61 −0.04 0.02 0.96 0.92–1.00 3.77 × 10−2

Asthma Genus Lachnospiraceae_UCG004 60 0.05 0.02 1.05 1.01–1.11 2.92 × 10−2

Asthma Genus Lachnospira 5 0.27 0.12 1.32 1.04–1.66 2.20 × 10−2

Asthma Genus Marvinbryantia 60 −0.08 0.03 0.93 0.88–0.98 4.13 × 10−3

Asthma Genus Ruminococcus_Torques_Group 61 −0.05 0.02 0.95 0.91–0.99 2.77 × 10−2
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Infant Longitudinal Development (CHILD) Study [59]. 
They reported a significant decrease in the relative abun-
dance of the genus Lachnospira in children at risk of 
asthma, which was also confirmed in a mouse model of 
experimental asthma [60]. The authors suggested that 
inoculation of germ-free mice with these bacterial taxa 
ameliorated lung inflammation in their adult progeny. 
Subsequently, another study extended their previous 
work and found a reduction in the abundance of Lach-
nospira in the 3-month fecal microbiota of asthmatic 
children, which was considered a potential indicator of 
asthma diagnosed in preschool-age children [61]. This 
reduction was accompanied by reduced levels of fecal 
acetate and dysregulation of enterohepatic metabolites 
[62]. However, our findings were inconsistent with those 
studies as we found that asthma was positively corre-
lated with the relative abundance of genus Lachnospira. 
We hypothesize that the positive and negative effects of 
Lachnospira on asthma may be species- and strain-spe-
cific, and our study only analyzed data from adults. In 
addition to Lachnospiraceae, we also found that genus 
Ruminococcus2 was significantly causally associated with 
a lower risk of asthma, while the genetically predicted 
risk of asthma was negatively correlated with the relative 
abundance of genus Ruminococcus_torques_group, sug-
gesting that genus Ruminococcus may have a protective 
effect against asthma. These findings are in line with pre-
vious research that has shown a low relative abundance 
of the genus Ruminococcus in stools collected during 
early childhood is linked to an increased risk of asthma 
[63]. In addition, a reduction of Ruminococcus was also 
negatively correlated with the total fecal IgE levels and 
strongly associated with children who have mite-sensi-
tized asthma [64]. Furthermore, our study revealed sug-
gestive causal effects of genus Oxalobacter on a higher 
risk of asthma, and class Actinobacteria, family Pas-
teurellaceae, order NB1n, and order Pasteurellales on a 
lower risk of asthma. Prior studies, including Chung KF 
[65] and Perez-Garcia et  al. [66], have highlighted the 
involvement of Actinobacteria and Pasteurellaceae in 
asthma risk, indicating these taxa’s potential as biomark-
ers and therapeutic targets. Our study contributes to the 
understanding of these relationships by quantifying their 
effects on asthma risk and underscores the complexity of 
the microbiome’s role in respiratory health.

We conducted an analysis to examine the possible asso-
ciations between gut metabolites and asthma, as they play 
a crucial role in the interplay between gut microbiota and 
asthma. While previous studies have suggested potential 
roles for gut metabolites in asthma, our MR study failed 
to demonstrate the causality of genetically predicted gut 
microbiota with asthma. However, our study did reveal 
that eosinophilic asthma was associated with lower levels 

of indolepropionate (p = 3.81 × 10^-2), albeit this p-value 
is nominal and has not been adjusted for multiple com-
parisons. This finding, therefore, should be viewed as 
exploratory, prompting further investigation into the role 
of indolepropionate as a potential biomarker for eosino-
philic asthma. Indolepropionate has been shown to 
activate mouse pregnane X receptor (PXR) and induces 
anti-inflammatory effects [67]. Previous studies have 
revealed that a higher level of indolepropionate was asso-
ciated with a lower risk of type 2 diabetes and increased 
insulin secretion [68, 69]. Another large population-
based study showed that increased physical activity was 
significantly associated with high levels of indolepropion-
ate [70]. Considering these multifaceted implications, the 
association of indolepropionate with asthma, particularly 
eosinophilic asthma, warrants a deeper investigation.

Our MR study presents several noteworthy advan-
tages. Firstly, we employed a distinctive two-sample bi-
directional MR design to investigate the potential causal 
association between gut microbiota and metabolites with 
asthma, thereby providing a robust theoretical founda-
tion for the “gut-lung axis” mechanisms. Secondly, we 
utilized one of the largest available GWAS summary 
datasets, ensuring sufficient statistical power to detect 
causal effects accurately. Lastly, we comprehensively ana-
lyzed four distinct asthma phenotypes, enabling us to 
evaluate the common gut microbiota causally related to 
different asthma phenotypes and identify novel insights 
into the gut microbiota-mediating pathogenesis of 
asthma.

However, there are also several limitations in this study. 
Firstly, the study included a relaxed cutoff for instru-
mental variables selection (p  < 1 × 10−5) for gut micro-
biota and metabolites due to limited SNPs meeting the 
genome-wide significance threshold (p < 5 × 10−8), poten-
tially leading to weak instrument bias. Nonetheless, we 
addressed these limitations using F-statistics and sensi-
tivity analyses to ensure the validity of the results. Sec-
ondly, we only described gut microbiota at the genus 
level or above due to the lack of data at the species level, 
highlighting the need for metagenomic sequencing 
techniques to obtain more specific and accurate results. 
Thirdly, our study was constrained by the availability of 
demographic information in the underlying data sources, 
which precluded us from conducting further subgroup 
analyses to explore age-specific or gender-specific causal 
relationships between gut microbiota and asthma. 
Fourthly, The Finnish population has unique genetic 
characteristics due to historical events, which may limit 
the generalizability of our findings to other populations. 
While this specificity offers valuable insights into asthma 
genetics, it also means that our results may not fully rep-
resent the genetic associations found in more genetically 
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diverse populations. Fifthly, MiBioGen, predominantly 
of European ancestry, includes approximately 28% with 
other/multiple ancestries, while all FinnGen individuals 
are of European descent. We acknowledge that varying 
genetic ancestries can lead to differences in LD patterns, 
potentially influencing the robustness of our MR results. 
Furthermore, the gut metabolites GWAS in our study 
had a relatively small sample size and limited loci stud-
ied. Therefore, further research with larger GWAS sta-
tistics is necessary to provide a more precise evaluation 
of the association between gut metabolites and asthma. 
Additionally, we recognize a limitation regarding the MR 
assumption of genotype independence from microbe-
asthma confounders. Anthropomorphic traits like BMI, 
which influence both microbial abundance and asthma 
risk and have genetic components, might introduce 
unmeasured confounding in our analysis.

Conclusions
In summary, our MR study provides compelling evidence 
supporting a causal relationship between the gut micro-
biota on the development of asthma. These findings offer 
novel insights into the underlying mechanisms of micro-
biota-mediated asthma and highlight the potential for 
targeted manipulation of the gut microbiota in the pre-
vention and treatment of this disease. However, further 
studies are necessary to fully understand the mechanisms 
underlying this relationship and to evaluate the efficacy 
of gut microbiota manipulation as a therapeutic strategy 
for asthma.

Abbreviations
MR	� Mendelian randomization
IVs	� Instrumental variables
GWAS	� Genome-wide association studies
SNPs	� Single-nucleotide polymorphisms
IVW	� Inverse-variance weighted
MR-PRESSO	� Mendelian Randomization Pleiotropy RESidual Sum and Outlier
LD	� Linkage disequilibrium
MAF	� Minor allele frequency
Nsnp	� Number of single-nucleotide polymorphisms
SE	� Standard error
OR	� Odds ratio
CI	� Confidence interval
FDR	� False discovery rate
CHILD	� Canadian Healthy Infant Longitudinal Development
PXR	� Pregnane X receptor

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12890-​024-​02898-x.

Additional file 1: Table S1. Characteristics of included GWAS summary-
level data of gut microbiota, gut metabolites and asthma. Table S2. 
Causal associations between gut microbiota and asthma by using other 
four methods. Table S3. Full result of MR estimates for causal associa-
tions between gut microbiota and four phenotypes of asthma. Table S4. 
Causal associations between asthma and gut microbiota by using other 

four methods. Table S5. Full result of MR estimates for causal associations 
between four phenotypes of asthma and gut microbiota. Table S8. The 
sensitivity analyses of causality between gut microbiota and asthma and 
its phenotypes based on MR results. Table S9. The sensitivity analyses of 
causality between asthma and its phenotypes and gut microbiota based 
on MR results. Figure S1. Scatter plots for the causal association between 
asthma and gut microbiota. Figure S2. Leave-one-out plots for the causal 
association between gut microbiota and asthma. Figure S3. Leave-one-
out plots for the causal association between asthma and gut microbiota.

Additional file 2: Detailed information on genetic variants included as 
instruments for traits.

Additional file 3: Table S6. Full result of MR estimates for causal associa-
tions between gut metabolites and asthma. Table S7. Full result of MR 
estimates for causal associations between asthma and gut metabolites.

Acknowledgements
The authors express their gratitude to the participants and investigators form 
the FinnGen study, the TwinsUK study, and the KORA study. The authors also 
appreciate the MiBioGen consortium for releasing the gut microbiota GWAS 
summary statistics.

Authors’ contributions
JL, LL, and JS designed the study. CZ, CH and GP obtained the genetic data. JL, 
CZ, LL, and MH performed the MR analysis. CH and GP interpreted the results 
of the data analyses. JL, LL and JS drafted the manuscript. All authors read and 
approved the final manuscript.

Funding
This work was supported by the Medical Science and Technology Project of 
Zhejiang Province (2023RC289, 2022RC272).

Availability of data and materials
The GWAS data of gut microbiota were retrieved from GWAS Catalog 
(https://​www.​ebi.​ac.​uk/​gwas/​publi​catio​ns/​33462​485). The GWAS data of gut 
metabolites were retrieved from GWAS Catalog (https://​www.​ebi.​ac.​uk/​gwas/​
publi​catio​ns/​24816​252). The GWAS data of asthma and its phenotypes were 
retrieved from IEU-OpenGWAS project (https://​gwas.​mrcieu.​ac.​uk/​datas​ets/​
finn-b-​J10_​ASTHMA/, https://​gwas.​mrcieu.​ac.​uk/​datas​ets/​finn-b-​ASTHMA_​
OBESI​TY/, https://​gwas.​mrcieu.​ac.​uk/​datas​ets/​finn-b-​ASTHMA_​NONAL​LERG/, 
https://​gwas.​mrcieu.​ac.​uk/​datas​ets/​finn-b-​ALLERG_​ASTHMA/, and https://​
gwas.​mrcieu.​ac.​uk/​datas​ets/​finn-b-​ASTHMA_​EOSIN​OPHIL_​SUGG/).

Declarations

Ethics approval and consent to participate
This research has been conducted using published studies and consortia 
providing publicly available summary statistics. All original studies have been 
approved by the corresponding ethical review board, and the participants 
have provided informed consent. In addition, no individual-level data was 
used in this study. Therefore, no new ethical review board approval was 
required.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1 Department of Pulmonary and Critical Care Medicine, Shaoxing People’s 
Hospital, Shaoxing 312000, Zhejiang, China. 2 Department of Pulmonary 
and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical 
University, Wenzhou 325000, Zhejiang, China. 

Received: 20 March 2023   Accepted: 5 February 2024

https://doi.org/10.1186/s12890-024-02898-x
https://doi.org/10.1186/s12890-024-02898-x
https://www.ebi.ac.uk/gwas/publications/33462485
https://www.ebi.ac.uk/gwas/publications/24816252
https://www.ebi.ac.uk/gwas/publications/24816252
https://gwas.mrcieu.ac.uk/datasets/finn-b-J10_ASTHMA/
https://gwas.mrcieu.ac.uk/datasets/finn-b-J10_ASTHMA/
https://gwas.mrcieu.ac.uk/datasets/finn-b-ASTHMA_OBESITY/
https://gwas.mrcieu.ac.uk/datasets/finn-b-ASTHMA_OBESITY/
https://gwas.mrcieu.ac.uk/datasets/finn-b-ASTHMA_NONALLERG/
https://gwas.mrcieu.ac.uk/datasets/finn-b-ALLERG_ASTHMA/
https://gwas.mrcieu.ac.uk/datasets/finn-b-ASTHMA_EOSINOPHIL_SUGG/
https://gwas.mrcieu.ac.uk/datasets/finn-b-ASTHMA_EOSINOPHIL_SUGG/


Page 11 of 12Li et al. BMC Pulmonary Medicine           (2024) 24:72 	

References
	1.	 Lommatzsch M, Brusselle GG, Levy ML, et al. A (2) BCD: a concise guide for 

asthma management. Lancet Respir Med. 2023;S2213-2600(22):00490–8.
	2.	 Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, Abbasi-Kan-

gevari M, Abbastabar H, Abd-Allah F, Abdelalim A, Abdollahi M. Global 
burden of 369 diseases and injuries in 204 countries and territories, 1990-
2019: a systematic analysis for the global burden of disease study 2019. 
Lancet. 2020;396(10258):1204–22.

	3.	 Svanes C, Holloway JW, Krauss-Etschmann S. Preconception origins of 
asthma, allergies and lung function: the influence of previous genera-
tions on the respiratory health of our children. J Intern Med. 2023;

	4.	 Wang J, Zhang X, Zhang L, et al. Age-related clinical, inflammatory char-
acteristics, phenotypes and treatment response in asthma. J Allergy Clin 
Immunol Pract. 2023;11(1):210–9.

	5.	 Bush A. Pathophysiological Mechanisms of Asthma. Front Pediatr. 
2019;7:68.

	6.	 Chen YC, Chen Y, Lasky-Su J, et al. Environmental and genetic associations 
with aberrant early-life gut microbial maturation in childhood asthma. J 
Allergy Clin Immunol. 2023;S0091-6749(23):00038–6.

	7.	 Chung KF, Wenzel SE, Brozek JL, et al. International ERS/ATS guidelines 
on definition, evaluation and treatment of severe asthma. Eur Respir J. 
2014;43(2):343–73.

	8.	 Floch MH. Intestinal microecology in health and wellness. J Clin Gastro-
enterol. 2011;45(Suppl):S108–10.

	9.	 Bokulich NA, Chung J, Battaglia T, et al. Antibiotics, birth mode, and 
diet shape microbiome maturation during early life. Sci Transl Med. 
2016;8(343):343–82.

	10.	 David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly 
alters the human gut microbiome. Nature. 2014;505(7484):559–63.

	11.	 Avery EG, Bartolomaeus H, Maifeld A, et al. The gut microbiome in 
hypertension: recent advances and future perspectives. Circ Res. 
2021;128(7):934–50.

	12.	 Canfora EE, Meex RCR, Venema K, et al. Gut microbial metabolites in 
obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15(5):261–73.

	13.	 Ajami NJ, Wargo JA. AI finds microbial signatures in tumours and blood 
across cancer types. Nature. 2020;579(7800):502–3.

	14.	 Demirci M, Tokman HB, Uysal HK, et al. Reduced Akkermansia muciniphila 
and Faecalibacterium prausnitzii levels in the gut microbiota of children 
with allergic asthma. Allergol Immunopathol (Madr). 2019;47(4):365–71.

	15.	 Stokholm J, Blaser MJ, Thorsen J, et al. Maturation of the gut microbiome 
and risk of asthma in childhood. Nat Commun. 2018;9(1):141.

	16.	 Smith GD, Ebrahim S. ’Mendelian randomization’: can genetic epide-
miology contribute to understanding environmental determinants of 
disease? Int J Epidemiol. 2003;32(1):1–22.

	17.	 Lawlor DA, Harbord RM, Sterne JA, et al. Mendelian randomization: using 
genes as instruments for making causal inferences in epidemiology. Stat 
Med. 2008;27(8):1133–63.

	18.	 Emdin CA, Khera AV, Kathiresan S. Mendelian Randomization. JAMA. 
2017;318(19):1925–6.

	19.	 Zhang Y, Zhang X, Chen D, et al. Causal associations between gut micro-
biome and cardiovascular disease: a Mendelian randomization study. 
Front Cardiovasc Med. 2022;9:971376.

	20.	 Xu Q, Ni JJ, Han BX, et al. Causal relationship between gut microbiota and 
autoimmune diseases: a two-sample Mendelian randomization study. 
Front Immunol. 2021;12:746998.

	21.	 Ni JJ, Xu Q, Yan SS, et al. Gut microbiota and psychiatric disorders: a two-
sample Mendelian randomization study. Front Microbiol. 2021;12:737197.

	22.	 Kurilshikov A, Medina-Gomez C, Bacigalupe R, et al. Large-scale associa-
tion analyses identify host factors influencing human gut microbiome 
composition. Nat Genet. 2021;53(2):156–65.

	23.	 Wang J, Kurilshikov A, Radjabzadeh D, et al. Meta-analysis of human 
genome-microbiome association studies: the MiBioGen consortium 
initiative. Microbiome. 2018;6(1):101.

	24.	 Wei Z, Yang B, Tang T, et al. Gut microbiota and risk of five common 
cancers: a univariable and multivariable Mendelian randomization 
study. Cancer Med. 2023;12(9):10393–405.

	25.	 Liu K, Wu P, Zou J, et al. Mendelian randomization analysis reveals 
causal relationships between gut microbiome and optic neuritis. Hum 
Genet. 2023;142(8):1139–48.

	26.	 Shin SY, Fauman EB, Petersen AK, et al. An atlas of genetic influences 
on human blood metabolites. Nat Genet. 2014;46(6):543–50.

	27.	 Liu SK, Ma LB, Yuan Y, et al. Alanylglutamine relieved asthma symptoms 
by regulating gut microbiota and the derived metabolites in mice. 
Oxidative Med Cell Longev. 2020;2020:7101407.

	28.	 Zhen J, Zhao P, Li Y, et al. The multiomics analyses of gut microbiota, 
urine metabolome and plasma proteome revealed significant changes 
in allergy featured with indole derivatives of tryptophan. J Asthma 
Allergy. 2022;15:117–31.

	29.	 Thorburn AN, McKenzie CI, Shen S, et al. Evidence that asthma is a 
developmental origin disease influenced by maternal diet and bacte-
rial metabolites. Nat Commun. 2015;6:7320.

	30.	 Hsu WH, Lin LJ, Lu CK, et al. Effect of you-Gui-wan on house dust mite-
induced mouse allergic asthma via regulating amino acid metabolic 
disorder and gut Dysbiosis. Biomolecules. 2021;11(6)

	31.	 FinnGen consortium. FinnGen Documentation of R5 release. 2021. 
https://​finng​en.​gitbo​ok.​io/​docum​entat​ion/. .

	32.	 Sanna S, van Zuydam NR, Mahajan A, et al. Causal relationships among 
the gut microbiome, short-chain fatty acids and metabolic diseases. 
Nat Genet. 2019;51(4):600–5.

	33.	 Auton A, Brooks LD, Durbin RM, et al. A global reference for human 
genetic variation. Nature. 2015;526(7571):68–74.

	34.	 Kamat MA, Blackshaw JA, Young R, et al. PhenoScanner V2: an 
expanded tool for searching human genotype-phenotype associa-
tions. Bioinformatics. 2019;35(22):4851–3.

	35.	 Burgess S, Butterworth A, Thompson SG. Mendelian randomization 
analysis with multiple genetic variants using summarized data. Genet 
Epidemiol. 2013;37(7):658–65.

	36.	 Pierce BL, Burgess S. Efficient design for Mendelian randomization 
studies: subsample and 2-sample instrumental variable estimators. Am 
J Epidemiol. 2013;178(7):1177–84.

	37.	 Bowden J, Davey Smith G, Burgess S. Mendelian randomization with 
invalid instruments: effect estimation and bias detection through 
Egger regression. Int J Epidemiol. 2015;44(2):512–25.

	38.	 Bowden J, Davey Smith G, Haycock PC, et al. Consistent estimation 
in Mendelian randomization with some invalid instruments using a 
weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.

	39.	 Glickman ME, Rao SR, Schultz MR. False discovery rate control is a 
recommended alternative to Bonferroni-type adjustments in health 
studies. J Clin Epidemiol. 2014;67(8):850–7.

	40.	 Egger M, Smith GD, Phillips AN. Meta-analysis: principles and proce-
dures. Bmj. 1997;315(7121):1533–7.

	41.	 Burgess S, Scott RA, Timpson NJ, et al. Using published data in Mende-
lian randomization: a blueprint for efficient identification of causal risk 
factors. Eur J Epidemiol. 2015;30(7):543–52.

	42.	 Palmer TM, Lawlor DA, Harbord RM, et al. Using multiple genetic vari-
ants as instrumental variables for modifiable risk factors. Stat Methods 
Med Res. 2012;21(3):223–42.

	43.	 Zou XL, Wu JJ, Ye HX, et al. Associations between gut microbiota 
and asthma Endotypes: a cross-sectional study in South China 
based on patients with newly diagnosed asthma. J Asthma Allergy. 
2021;14:981–92.

	44.	 Abrahamsson TR, Jakobsson HE, Andersson AF, et al. Low gut micro-
biota diversity in early infancy precedes asthma at school age. Clin Exp 
Allergy. 2014;44(6):842–50.

	45.	 Okba AM, Saber SM, Abdel-Rehim AS, et al. Fecal microbiota profile 
in atopic asthmatic adult patients. Eur Ann Allergy Clin Immunol. 
2018;50(3):117–24.

	46.	 Zheng P, Zhang K, Lv X, et al. Gut microbiome and metabolomics pro-
files of allergic and non-allergic childhood asthma. J Asthma Allergy. 
2022;15:419–35.

	47.	 Kozik AJ, Huang YJ. The microbiome in asthma: role in pathogenesis, 
phenotype, and response to treatment. Ann Allergy Asthma Immunol. 
2019;122(3):270–5.

	48.	 Hufnagl K, Pali-Schöll I, Roth-Walter F, et al. Dysbiosis of the gut 
and lung microbiome has a role in asthma. Semin Immunopathol. 
2020;42(1):75–93.

	49.	 Huang C, Ni Y, Du W, et al. Effect of inhaled corticosteroids on microbi-
ome and microbial correlations in asthma over a 9-month period. Clin 
Transl Sci. 2022;15(7):1723–36.

	50.	 Sbihi H, Boutin RC, Cutler C, et al. Thinking bigger: how early-life environ-
mental exposures shape the gut microbiome and influence the develop-
ment of asthma and allergic disease. Allergy. 2019;74(11):2103–15.

https://finngen.gitbook.io/documentation/


Page 12 of 12Li et al. BMC Pulmonary Medicine           (2024) 24:72 

	51.	 Verhulst SL, Vael C, Beunckens C, et al. A longitudinal analysis on the 
association between antibiotic use, intestinal microflora, and wheezing 
during the first year of life. J Asthma. 2008;45(9):828–32.

	52.	 Begley L, Madapoosi S, Opron K, et al. Gut microbiota relationships to 
lung function and adult asthma phenotype: a pilot study. BMJ Open 
Respir Res. 2018;5(1):e000324.

	53.	 Spacova I, Van Beeck W, Seys S, et al. Lactobacillus rhamnosus probiotic 
prevents airway function deterioration and promotes gut microbiome 
resilience in a murine asthma model. Gut Microbes. 2020;11(6):1729–44.

	54.	 Chua HH, Chou HC, Tung YL, et al. Intestinal Dysbiosis featuring abun-
dance of Ruminococcus gnavus associates with allergic diseases in 
infants. Gastroenterology. 2018;154(1):154–67.

	55.	 Hu C, van Meel ER, Medina-Gomez C, et al. A population-based study 
on associations of stool microbiota with atopic diseases in school-age 
children. J Allergy Clin Immunol. 2021;148(2):612–20.

	56.	 Galazzo G, van Best N, Bervoets L, et al. Development of the microbiota 
and associations with birth mode, diet, and atopic disorders in a longi-
tudinal analysis of stool samples, collected from infancy through early 
childhood. Gastroenterology. 2020;158(6):1584–96.

	57.	 Bunker JJ, Drees C, Watson AR, et al. B cell superantigens in the human 
intestinal microbiota. Sci Transl Med. 2019;11(507):eaau9356.

	58.	 Püngel D, Treveil A, Dalby MJ, et al. Bifidobacterium breve UCC2003 
exopolysaccharide modulates the early life microbiota by acting as a 
potential dietary substrate. Nutrients. 2020;12(4):948.

	59.	 Arrieta MC, Stiemsma LT, Dimitriu PA, et al. Early infancy microbial and 
metabolic alterations affect risk of childhood asthma. Sci Transl Med. 
2015;7(307):307ra152.

	60.	 Arrieta MC, Sadarangani M, Brown EM, et al. A humanized microbiota 
mouse model of ovalbumin-induced lung inflammation. Gut Microbes. 
2016;7(4):342–52.

	61.	 Stiemsma LT, Arrieta MC, Dimitriu PA, et al. Shifts in Lachnospira and 
Clostridium sp. in the 3-month stool microbiome are associated with 
preschool age asthma. Clin Sci (Lond). 2016;130(23):2199–207.

	62.	 Ozerskaia IV, Geppe NA, Romantseva EV, et al. Prospects for the correction 
of intestinal microbiota in the prevention and treatment of asthma in 
children. Vopr Pitan. 2021;90(4):74–83.

	63.	 Depner M, Taft DH, Kirjavainen PV, et al. Maturation of the gut microbi-
ome during the first year of life contributes to the protective farm effect 
on childhood asthma. Nat Med. 2020;26(11):1766–75.

	64.	 Chiu CY, Chan YL, Tsai MH, et al. Cross-talk between airway and gut micro-
biome links to IgE responses to house dust mites in childhood airway 
allergies. Sci Rep. 2020;10(1):13449.

	65.	 Chung KF. Airway microbial dysbiosis in asthmatic patients: a target for 
prevention and treatment? J Allergy Clin Immunol. 2017;139(4):1071–81.

	66.	 Perez-Garcia J, González-Carracedo M, Espuela-Ortiz A, et al. The 
upper-airway microbiome as a biomarker of asthma exacerbations 
despite inhaled corticosteroid treatment. J Allergy Clin Immunol. 
2023;151(3):706–15.

	67.	 Wlodarska M, Luo C, Kolde R, et al. Indoleacrylic acid produced by com-
mensal Peptostreptococcus species suppresses inflammation. Cell Host 
Microbe. 2017;22(1):25–37.e26.

	68.	 Morze J, Wittenbecher C, Schwingshackl L, et al. Metabolomics and 
type 2 diabetes risk: an updated systematic review and Meta-analysis of 
prospective cohort studies. Diabetes Care. 2022;45(4):1013–24.

	69.	 Menni C, Zhu J, Le Roy CI, et al. Serum metabolites reflecting gut 
microbiome alpha diversity predict type 2 diabetes. Gut Microbes. 
2020;11(6):1632–42.

	70.	 Kemppainen SM, Fernandes Silva L, Lankinen MA, et al. Metabolite 
signature of physical activity and the risk of type 2 diabetes in 7271 men. 
Metabolites. 2022;12(1):69.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Causal associations between gut microbiota, metabolites and asthma: a two-sample Mendelian randomization study
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Data sources
	Instrumental variables selection
	Statistical analysis

	Results
	Selection of instrumental variables
	Causal effects of gut microbiota on asthma
	Causal effects of asthma on gut microbiota
	Bi-directional MR analysis of gut metabolites and asthma
	Sensitivity analysis

	Discussion
	Conclusions
	Acknowledgements
	References


