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Abstract 

Background  Several observational studies have reported an association between hand grip strength (HGS) and pul-
monary function (PF). However, causality is unclear. To investigate whether HGS and PF are causally associated, we 
performed Mendelian randomization (MR) analyses.

Methods  We identified 110 independent single nucleotide polymorphisms (SNPs) for right-hand grip strength 
(RHGS) and 103 independent SNPs for left-hand grip strength (LHGS) at the genome-wide significant threshold (P < 5 
× 10−8) from MRC-IEU Consortium and evaluated these related to PF. MR estimates were calculated using the inverse-
variance weighted (IVW) method and multiple sensitivity analyses were further performed.

Results  Genetical liability to HGS was positively causally associated with forced vital capacity (FVC) and forced 
expiratory volume in one second (FEV1), but not with FEV1/FVC. In addition, there was positive causal association 
between RHGS and FVC (OR=1.519; 95% CI, 1.418-1.627; P=8.96E-33), and FEV1 (OR=1.486; 95% CI, 1.390-1.589; 
P=3.19E-31); and positive causal association between LHGS and FVC (OR=1.464; 95% CI, 1.385-1.548; P=2.83E-41) 
and FEV1 (OR=1.419; 95% CI, 1.340-1.502; P=3.19E-33). Nevertheless, no associations were observed between RHGS 
and FEV1/FVC (OR=0.998; 95% CI, 0.902-1.103; P=9.62E-01) and between LHGS and FEV1/FVC (OR=0.966; 95% CI, 
0.861-1.083; P=5.52E-01). Similar results were shown in several sensitivity analyses.

Conclusion  Our study provides support at the genetic level that HGS is positively causally associated with FVC 
and FEV1, but not with FEV1/FVC. Interventions for HGS in PF impairment deserve further exploration as potential 
indicators of PF assessment.
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Introduction
Sarcopenia reduces the quality of life of older people and 
is a high-risk factor for complications [1] such as falls, 
fractures, dysphagia, respiratory dysfunction, and cardio-
vascular disease [2, 3]. Sarcopenia is intrinsic to the con-
cept of frailty and represents a special target group for 
frailty prevention [4]. The term “sarcopenia” was coined 
in 1989 to describe the progressive age-related loss of 
muscle mass [5]. More recently, the Asian Working 
Group for Sarcopenia 2019 (AWGS2019) in the elderly 
changed the diagnostic algorithm to focus on muscle 
strength and recommended early detection and treat-
ment for sarcopenia [6]. Expensive and time-consuming 
radiological evaluation methods (such as CT, MRI, and 
dual-energy X-ray absorptiometry) are used in clinical 
practice to measure body composition (including total 
lean body mass and appendicular lean body mass) [7]. 
It has been shown that in patients with sarcopenia, the 
quadriceps muscles are the first to atrophy. Therefore, 
the use of ultrasound to measure the quadriceps mass 
as a new diagnostic method to improve the assessment 
and management of sarcopenia has been proposed by the 
International Society of Physical and Rehabilitation Med-
icine (ISPRM) [8]. Recently, hand grip strength (HGS) 
has become a convenient measurement for assessing 
overall muscle strength that is simple, fast, and standard-
ized. Previous studies have reported a strong correlation 
between HGS and muscle mass, nutritional status, and 
walking performance [9, 10]. Moreover, HGS is believed 
a crucial index when diagnosing sarcopenia as weak HGS 
is a significant predictor of low muscle mass and a char-
acteristic of decreased physical function [11, 12].

Impaired pulmonary function (PF) is associated not 
only with respiratory complications for instance pneu-
monia and bronchitis, but also with all-cause mortality 
and cardiovascular disease [13, 14]. Thus, the early detec-
tion of older people at high risk of impaired PF, from a 
public health perspective, is of importance. A large body 
of emerging epidemiological research has found an asso-
ciation between HGS and a variety of detrimental health 
outcomes in older people. Meanwhile, Leong et al. found 
that grip strength was inversely associated with myocar-
dial infarction, all-cause mortality, non-cardiovascular 
mortality, cardiovascular mortality, and stroke [15]. Age-
related decline in skeletal muscles also consists of a loss 
of respiratory muscle mass and strength and thus may 
contribute to impaired PF [16]. The relations HGS and 
PF have been investigated, with most studies paid more 
attention to individuals in nursing home settings or hos-
pitals or using only a few participants [17, 18]. It has also 
been known about community-dwelling women aged 
65 and older population in the Korean National Health 
and Nutrition Examination Survey (KNHANES) [10]. 

However, most of the evidence for the relations comes 
from observational studies, which are inconclusive in 
identifying the causality because of the possibility of 
residual confounding and reverse causation.

For causality, Mendelian randomization (MR) is an 
increasingly applied analysis method that can employ 
genetic variations from recent genome-wide association 
studies (GWAS) as instrumental variables (IVs) to clarify 
the causal relationship between exposure and outcomes, 
and decrease potential confounding factors in observa-
tional studies [19]. Therefore, the aim of this study was 
to perform the two-sample MR analyses to examine 
the potential causality between HGS and PF, including 
Forced Expiratory Volume in one second (liters; FEV1), 
Forced Vital Capacity (liters; FVC), and Forced Expira-
tory Volume in one second/ Forced Vital Capacity ratio 
(percentage; FEV1/ FVC ratio). And multiple comple-
mentary analyses also have been conducted to test the 
robustness of the results.

Methods
Study design
The two-sample MR analyses flow chart is shown in 
Fig.  1. In short, the genetic variations used as IVs must 
follow three key assumptions: (i) the genetic variants 
are strongly associated with HGS (each genetic variant 
for HGS reached GWAS [P < 5 × 10−8], and the thresh-
old of F-statistic); (ii), the genetic variants should not be 
associated with any confounders; (iii) the genetic variants 
effect the outcome only via the HGS (no horizontal plei-
otropy) (Fig. 2). All summary statistics presented in this 
study were derived from published GWAS (https://​gwas.​
mrcieu.​ac.​uk/) on HGS and PF (Supplementary Table 1).

Data sources for HGS and selection of IVs
Grip strength was measured using a hand-held 
dynamometer and multiple measurements were taken 
to obtain the maximum value. Exclusion criteria for 
grip strength analysis included age <65 years, non-
Caucasian origin via self-report or 1 clustering of the 
GWAS data, missing grip strength data, self-reported 
pain, surgery, or osteoarthritis in the dominant hand 
was considered [20]. The summary statistic for right-
handgrip strength (RHGS) and left-handgrip strength 
(LHGS) were derived from a recently released GWAS 
of the MRC-IEU Consortium, which included 461,089 
participants and 461,026 participants from Europe 
[21]. In Brief, this GWAS examined two HGS pheno-
types including RHGS (n = 9,851,867) and LHGS (n = 
9,851,867). In the MRC-IEU Consortium, we adopted 
absolute rather than relative HGS as a marker because 
of absolute HGS may more associated with physical 
capability than relative HGS [22].

https://gwas.mrcieu.ac.uk/
https://gwas.mrcieu.ac.uk/
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Fig. 1  The steps of Mendelian randomization (MR) analyses

Fig. 2  Three key assumptions of the MR study. (i) SNPs are robustly associated with HGS (hand grip strength); (ii) SNPs are independent 
of other known confounders; (iii) SNPs affect the risk of PF (pulmonary function) only through HGS. The red X means that the SNPs selected 
as the instrumental variables are not associated with the confounders and the outcomes directly.
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To meet the first assumption of MR analyses, this study 
selected 110 independent single-nucleotide polymor-
phisms (SNPs) associated with “RHGS” and 103 inde-
pendent SNPs associated with “LHGS” at a genome-wide 
significance level (P < 5×10−8), using the PLINK clump-
ing algorithm (R2 > 0.001, Kb = 10K) from the GWAS 
mentioned above. F-statistics were generated to assess 
the strength of selected SNPs using the following for-
mula: F =

R
2(N−2)

(1−R2)
 . Where, R2 is the percentage of the 

variability in HGS explained by the selected SNPs and N 
represents the sample size of the GWAS [23]. An F-sta-
tistic<10 indicates a low risk of weak instrument bias in 
MR analyses [23].

Data sources for pulmonary function
We derived three genetic instruments for PF: FVC, FEV1, 
and FEV1/ FVC. GWAS summary statistics for PF were 
extracted from: the MRC-IEU consortium for FVC and 
FEV1; the NA Consortium for FEV1/ FVC. Details of the 
datasets included in the analyses were shown in Supple-
mentary Table S1.

Statistical analyses
We ran a two-sample MR method using summary data 
from the MRC-IEU Consortium Genome-Wide Asso-
ciation Studies (GWAS). After extraction of statistic 
and harmonization of the effect alleles by GWAS, the 
MR estimates of the effect of HGS on PF was calculated 
using the Wald estimates. The Delta method was used to 
account for possible measurement errors in the estima-
tion of the causality between HGS and PF [24, 25]. The 
fixed-effects inverse variance weighted (IVW) method 
was applied to evaluate the final effect estimate. Scatter 
plots of the MR effects estimated by each method were 
also provided.

In the IVW analyses, pleiotropy of SNPs may affect 
causal estimates and bias the results. In this study, we 
calculated the Cochran’s Q to test the heterogene-
ity caused by different SNPs in the fixed-effects IVW. 
Cochran’s Q P-value < 0.05 indicated the presence of 
heterogeneity, and of horizontal pleiotropy [26]. In 
the case of potential horizontal pleiotropy, the ran-
dom-effects IVW method would be used. MR-Egger 
intercept test was performed to identify potential 
directional pleiotropy, with an intercept P-value < 0.05 
indicating significant pleiotropic bias [27].

In addition, we also conducted several sensitivity 
analyses to further ensure the robustness of our results, 
including the MR-Egger regression method [27], simple 
mode, weighted median method, and leave-one-SNP-out 
method. To rule out the IVs related to any confound-
ers that may affect HGS and PF, we also searched each 

selected SNP and its proxies in Phenoscanner (http://​
www.​pheno​scann​er.​medsc​hl.​cam.​ac.​uk/) [28] for pre-
viously detected associations (P-value < 5 × 10−8) with 
relevant confounders or PF. In this study, asthma, peak 
expiratory flow, bronchitis, pulmonary embolism, long-
standing illness, and disability or infirmity were regarded 
as confounders. We repeated the two-sample MR analy-
ses mentioned above after removing the SNPs related to 
relevant confounders or PF.

A two-sided P-value<0.05 was set as suggestive signifi-
cance, and due to the multiple comparisons, we further 
adopted a Bonferroni corrected threshold for statisti-
cal significance P-value< 0.008 (0.05/6). All MR analyses 
were conducted using R software (version 4.2.1; www.r-​
proje​ct.​org) with the R packages “Mendelian Randomiza-
tion” and “Two-sample MR”.

Results
SNP Selection and validation
In general, we included studies published between 2018 
and 2019 based mainly on European population (Supple-
mentary Table S1). Independent SNPs included for analy-
ses as IVs are shown in Supplementary Tables S2 and S3. 
They show the characteristics of all correlated SNPs for 
HGS. Overall, we extracted 110 and 103 independent 
SNPs that reached genome-wide significance from RHGS 
and LHGS, respectively. Among all selected SNPs, the 
F-statistics were higher than 10 and ranged from 30 to 
192. In the Phenoscanner, we detected 120 selected SNPs 
that were considered to be related to confounders or PF 
for HGS, respectively. (Supplementary Table S4, S5)

RHGS and PF
The IVW analyses indicated that the genetically pre-
dicted RHGS per standard deviation (SD) increase was 
positive associated with FVC (OR=1.519; 95% CI, 1.418-
1.627; P=8.96E-33), and FEV1 (OR=1.486; 95% CI, 1.390-
1.589; P=3.19E-31). On the contrary, no association was 
observed for FEV1/FVC (OR=0.998; 95% CI, 0.902-1.103; 
P=9.62E-01) (Table 1). For FVC, FEV1, and FEV1/FVC, 
the weighted-median and MR-Egger analyses indicated 
consistent estimates (Table1). No evidence of directional 
pleiotropy was identified. The heterogeneity was higher 
for indicators of PF. Therefore, an IVW analysis under a 
random-effects model was applied to mitigate the influ-
ence of heterogeneity (Table 2).

Scatter plot and forest plot of the association between 
RHGS and PF are shown in Supplementary Figure S1 
and Supplementary Figure S2, respectively, where simi-
lar results can be observed. The leave-one-out sensitivity 
analyses, as shown in Supplementary Figure S3, indicated 

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
http://www.r-project.org
http://www.r-project.org


Page 5 of 10Zhao et al. BMC Pulmonary Medicine          (2023) 23:459 	

Ta
bl

e 
1 

M
en

de
lia

n 
ra

nd
om

iz
at

io
n 

es
tim

at
es

 b
et

w
ee

n 
rig

ht
-h

an
d 

gr
ip

 s
tr

en
gt

h 
an

d 
pu

lm
on

ar
y 

fu
nc

tio
n

O
ut

co
m

es
SN

P 
se

le
ct

io
n

N
o.

 o
f S

N
Ps

IV
W

M
R 

Eg
ge

r
W

ei
gh

te
d 

m
ed

ia
n

Si
m

pl
e 

m
od

e
W

ei
gh

te
d 

m
od

e

O
R 

(9
5%

CI
)

P-
va

lu
e

O
R 

(9
5%

CI
)

P-
va

lu
e

O
R 

(9
5%

CI
)

P-
va

lu
e

O
R 

(9
5%

CI
)

P-
va

lu
e

O
R 

(9
5%

CI
)

P-
va

lu
e

FV
C

A
ll

16
9

1.
98

7
2.

31
E-

60
1.

74
2

2.
71

E-
04

1.
62

2
4.

42
E-

63
1.

76
0

4.
43

E-
14

1.
69

7
1.

98
E-

10

(1
.8

30
-2

.1
57

)
(1

.3
00

-2
.3

33
)

(1
.5

33
-1

.7
17

)
(1

.5
39

-2
.0

13
)

(1
.4

57
-1

.9
78

)

Re
m

ov
e

10
4

1.
51

9
8.

96
E-

33
1.

41
0

8.
86

E-
03

1.
48

0
5.

61
E-

35
1.

72
9

1.
03

E-
08

1.
69

2
1.

43
E-

02

(1
.4

18
-1

.6
27

)
(1

.0
95

-1
.8

14
)

(1
.3

90
-1

.5
75

)
(1

.4
56

-2
.0

55
)

(1
.1

19
-2

.5
59

)

FE
V1

A
ll

16
9

1.
83

9
2.

03
E-

58
1.

41
1

1.
06

E-
02

1.
56

2
1.

28
E-

50
1.

64
1

1.
75

E-
06

1.
50

4
5.

19
E-

06

(1
.7

07
-1

.9
80

)
(1

.0
87

-1
.8

31
)

(1
.4

73
-1

.6
56

)
1.

34
9-

1.
99

6)
(1

.2
69

-1
.7

82
)

Re
m

ov
e

10
4

1.
48

6
3.

19
E-

31
1.

26
6

6.
05

E-
0

1.
37

9
5.

69
E-

22
1.

69
0

5.
30

E-
06

1.
35

2
3.

64
E-

02

(1
.3

90
-1

.5
89

)
(0

.9
92

-1
.6

15
)

(1
.2

92
-1

.4
72

)
(1

.3
65

-2
.0

95
)

(1
.0

23
-1

.7
86

)

FE
V1

/F
VC

A
ll

16
5

0.
93

8
2.

60
E-

01
0.

67
0

4.
90

E-
02

0.
98

5
6.

58
E-

01
0.

99
0

9.
31

E-
01

1.
00

3
9.

78
E-

01

(0
.8

39
-1

.0
49

)
(0

.4
51

-0
.9

95
)

(0
.9

19
-1

.0
55

)
(0

.7
92

-1
.2

37
)

(0
.8

20
-1

.2
26

)

0.
99

8
0.

85
2

1.
04

8
1.

02
5

1.
03

5

Re
m

ov
e

10
1

(0
.9

02
-1

.1
03

)
9.

62
E-

01
(0

.5
89

-1
.2

32
)

3.
96

E-
01

(0
.9

62
-1

.1
42

)
2.

85
E-

01
(0

.8
01

-1
.3

12
)

8.
46

E-
01

(0
.8

48
-1

.2
63

)
7.

36
E-

01



Page 6 of 10Zhao et al. BMC Pulmonary Medicine          (2023) 23:459 

that the overall estimates were not disproportionately 
influenced by any individual SNP. The funnel plot in Sup-
plementary Figure S4 also revealed no evidence of hori-
zontal pleiotropy.

LHGS and PF
The IVW analyses showed that genetically predicted 
LHGS per standard deviation (SD) increase was posi-
tive related to FVC (OR =1.464; 95% CI, 1.385-1.548; 
P=2.83E-41), and FEV1 (OR=1.419; 95% CI, 1.340-
1.502; P=3.19E-33). Conversely, no association was 
observed for FEV1/FVC (OR=0.966; 95% CI, 0.861-1.083; 
P=5.52E-01) (Table 3). For FVC, FEV1, and FEV1/FVC, 
the weighted-median and MR-Egger analyses indicated 
consistent estimates (Table 3). No evidence of directional 
pleiotropy was detected. The heterogeneity was higher 
for indicators of PF. Hence, an IVW analysis under a ran-
dom-effects model was applied to mitigate the influence 
of heterogeneity (Table 4).

Scatter plot, forest plot, the results of the leave-one-out 
sensitivity analyses, and the funnel plot of the association 
between LHGS and PF are shown in Supplementary Fig-
ure S1, Supplementary Figure S2, Supplementary Figure 
S3, and Supplementary Figure S4, respectively, where 
similar results can be observed.

Discussion
In this study, we explored the causal associations between 
HGS and PF by using two-sample MR analyses. We con-
firmed that greater HGS was significantly causally asso-
ciated with the high-quality PF. In addition, there was a 
significant association between both right- and left- HGS 
and FVC, FEV1. Besides, no significant association was 
found between HGS and FEV1/FVC.

The observational studies that revealed HGS may be 
associated with PF and have aroused the interests of 
researchers to search for more evidence to demonstrate 
the causal association [29]. In this MR study, our results 
are consistent with those of previous observational stud-
ies that have found that HGS as a measurement of sar-
copenia may suggest a decline in PF in older people 
[17, 18]. Positive associations were found between HGS 
and maximal inspiratory pressure (MIP) and maximal 

expiratory pressure (MEP) in bivariate correlation anal-
yses of 62 Turkish nursing home residents with a mean 
age of 70.5, but only MIP was significantly related to HGS 
in the multiple linear regression analyses [17]. Recently, 
the association between HGS and PF was researched in 
50 individuals older than 70 in an acute medical ward 
[18]. Of spirometry measures including peak expiratory 
flow, FEV1, FVC, and peak cough flow, only peak cough 
flow was associated with HGS [18]. It remains controver-
sial why the causal association between HGS and FVC, 
FEV1, and FEV1/FVC. Our results were different from 
that in the previous studies, but several explanations can 
be given. The previous observational studies have been 
performed in nursing homes, hospitals, and commu-
nity-dwelling older people and have had relatively small 
sample sizes. Additionally, the important parameters 
associated with PF, such as asthma, peak expiratory flow, 
long-standing illness, disability or infirmity, pulmonary 
embolism, bronchitis, and emphysema, have not been 
adequately adjusted for in most previous studies. Adjust-
ing for potential confounding variables helps to clarify 
the true causal association between HGS and PF from a 
SNPs perspective.

To our knowledge, we believe this is the first MR study 
to document a positive causal association of HGS with 
FVC and FEV1 and no causal association with FEV1/
FVC, and that the association found between them was 
from a genetic level using MR analyses. Some mecha-
nisms could explain the significant relationships between 
HGS and PF. Skeletal muscle mass decreases with age 
and ultimately results in the loss of respiratory muscle 
mass and strength, for instance in the diaphragm mus-
cle [30]. Respiratory muscle strength plays a crucial role 
in the respiratory network, which adjusts the cross talk 
between PF and the respiratory muscles to maintain ade-
quate ventilation [31]. The activated respiratory muscles 
developed a pressure gradient in the intrathoracic, and 
air is exchanged over the alveolar surface. It has been 
reported that major parameters that represent respira-
tory muscle strength such as MEP and MIP are related 
to peripheral muscle strength, which shows that periph-
eral muscle strength and respiratory muscle strength are 
interrelated [32]. In another recent study, HGS as a meas-
urement of peripheral muscle strength had a significant 
positive correlation with MEP and MIP [33]. HGS is also 
closely related to PF in chronic obstructive pulmonary 
disease (COPD) patients. Qaisar et al. elucidated that the 
expression of CC16 and STA in serum showed a positive 
correlation with FEV1 and HGS in COPD patients [34], 
while Kyomoto et  al. found that HGS correlates more 
strongly with 6-min walk test distance (6-MWD) than 
other factors, and could be used as one of the predictors 
of exercise capacity in COPD patients [35]. Additionally, 

Table 2  Tests of pleiotropy of selected SNPs and heterogeneity 
between SNPs. (RHGS)

Outcomes Pleiotropy Test Heterogeneity Test

Intercept Beta (SE) P-Value Cochran’s Q P-Value

FVC 0.001 0.001 0.548 465.73 1.50E-47

FEV1 0.002 0.001 0.183 394.42 1.09E-35

FEV1/FVC 0.002 0.002 0.385 443.34 9.84E-45
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Samarghandi et  al. showed that HGS and peak inspira-
tory flow rate (PIFR) in acute exacerbation of COPD 
(AECOPD) hospitalized patients have a positive correla-
tion and can be used as one of the predictors of inspira-
tory muscle strength [36]. Besides, it has been revealed 
that weak respiratory muscle strength occurs at the 
beginning of a causal chain that can contribute to poor 
PF, as well as leading to death [37].

A decline in respiratory muscle strength may affect 
FVC and FEV1 more than FEV1/FVC as the latter typi-
cally depends not only upon adequate respiratory mus-
cle strength, but also on airway status. In this respect, 
the association between HGS and FVC and FEV1 was 
more prominent than the association with FEV1/FVC 
in the present study. Moreover, the positive causal asso-
ciation between HGS and resistance training and physi-
cal activity indicates that people who exercise regularly 
may have greater capacity to improve PF and skeletal 
muscle power.

Our study has several evident strengths. Firstly, this 
was the first two-sample MR study to evaluate the 
causal associations of HGS with FVC, FEV1, and FEV1/
FVC by using the recently published GWAS. Sec-
ondly, various complementary analyses were adopted 
to address pleiotropic bias and confirm the robustness 
of our results. Thirdly, we repeated the analyses after 
excluding the IVs related to any confounders or PF and 
the result was consistent.

Additionally, several potential limitations were also 
worth acknowledging. To begin with, while no appar-
ent pleiotropy was identified for the IVs used, the pos-
sibility of residual pleiotropy still cannot be completely 
ruled out. There may be other undiscovered causal 
pathways of HGS with PF. Next, SNPs associated with 
HGS were applied from the GWAS of MRC-IEU Con-
sortium, which includes participants aged between 40 
to 70 years from Europe. Furthermore, we do not have 
the demographic information which restricts the gener-
alizability of our results. Thus, further studies are war-
ranted to confirm our findings on other populations. 
Then, though HGS is an objective and common marker 
of muscular strength, it mainly represents upper body 

strength. Finally, because the causal relationship was 
evaluated using MR method depended on the genetic 
information of each trait, the result should be inter-
preted with caution [38], with the understanding that 
the development of HGS and PF were multifactorial and 
involved interactions among plenty of psycho-social-
environmental factors [39]. However, this bias would 
likely be minimal on account of the limited overlap in 
the samples between HGS and PF. In future studies, we 
will conduct prospective cohort studies to provide even 
stronger evidence of this causal relationship.

Conclusion
In summary, our study provides genetic evidence sup-
porting a causal relationship between HGS on FVC 
and FEV1, but not FEV1/FVC. Given the health impli-
cations of PF, timely detection of lower HGS in older 
adults may be useful in assessment of potential PF 
impairment. Additionally, in clinical interventions for 
patients with sarcopenia, it is important to focus not 
only on interventions targeting appendicular muscles 
but also on core muscle groups, particularly respiratory 
muscle groups.
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